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Abstract

As part of ongoing efforts to view biological processes as computations, several formal models

of DNA-based processes have been proposed and studied in the formal language literature. In

this thesis, we survey some classical formal language word and language operations, as well as

several bio-operations, and we propose a new operation inspired by a DNA recombination lab

protocol known as Cross-pairing Polymerase Chain Reaction, or XPCR. More precisely, we

define and study a word operation called word blending which models a special case of XPCR,

where two words xwy1 and y2wy sharing a non-empty overlap part w generate the word xwy.

Properties of word blending that we study include closure properties of the Chomsky families

of languages under this operation and its iterated version, existence of solution to equations

involving this operation, and its state complexity.

Keywords: Formal language models, bio-operations, DNA computing, word blending,

state complexity, decidability
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Chapter 1

Introduction

In [1], Adleman used DNA to solve a seven-city instance of the Directed Hamiltonian Path

Problem (a well-known NP-complete problem). This new approach inspired the study of

DNA-based computing. A single strand of DNA can be viewed as a word over the alphabet

{A,C,G,T }, so it is natural to model bio-operations on DNA as word operations.

In 1936, a formal model of computation called Turing machine was proposed [101]. The

Church-Turing thesis states that Turing machines have universal computational power [16,

102], and Turing machines are as computationally powerful as electronic computers [17, 90].

Thus, it follows that if we have a set of word operations that model DNA bio-operations, and

are able to simulate a Turing machine, we can theoretically use those DNA bio-operations to

build a DNA-based computer. Examples of bio-operations defined and investigated in the for-

mal language literature include splicing, overlap assembly, contextual insertion/deletion, block

substitution, hairpin completion, and template-directed extension. For example, the formal

system based on intra- and inter-molecular recombinations which model the process of gene

unscrambling in ciliated protozoans, was proved to have the same computational power as a

Turing machine, so its bio-operations could potentially be used as a basis for a DNA-based

computer [65].

In this thesis, we continue the exploration of biologically-inspired word operations by

defining and studying a novel bio-operation called word blending, which models a special

case of the Cross-pairing Polymerase Chain Reaction (XPCR) technique [29].

XPCR operates as follows: Given two single-stranded DNA molecules represented by

αAβ, βDγ, where α, β, γ are short sequences, and A,D are relatively long sequences, a new

single-stranded DNA molecule, represented by αAβDγ, can be produced by XPCR [30]. Con-

sider now the special case of XPCR where the input consists of two single-stranded DNA

molecules, αAβ, βAγ. While the expected outcome of XPCR would be αAβAγ, in practical

experiments the DNA molecule αAγ was the observed output [29]. We formalized this special

1
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2 Chapter 1. Introduction

case of XPCR, and called it the word blending operation. Formally, if we have two single-

stranded DNA molecules, represented by αAβ1, β2Aγ, the word blending of these two input

strands is the strand αAγ. This thesis investigates the word blending operation in the context

of formal languages.

In Chapter 2, we give a hierarchical classification of languages, called the Chomsky hi-

erarchy of languages, based on their generative grammars, and we discuss the decidability of

problems related to these families of languages.

In Chapter 3, we survey some well-studied word and language operations with their defini-

tions, and the closure properties of the Chomsky families of languages under these operations.

We also study the abstract families of languages, which are defined based on its closure under

a set of operations. Moreover, a type of descriptional complexity, called state complexity, of

some operations is introduced.

In Chapter 4, we briefly review some bio-operations on single strands of DNA and the

word operations that model them. For each biologically-inspired operation, we study its def-

inition, its variations, and the closure properties of the Chomsky families of languages under

this operation.

In Chapter 5, which is based on the article “Word blending in formal languages: The

Brangelina effect”, we introduce and study a special case of XPCR by the operation called

word blending, and study the closure properties of the Chomsky families of languages under

this operation and its iterated version, some decidability problems related to this operation, and

its state complexity.
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Chapter 2

Preliminaries

This chapter contains a basic introduction to the theory of formal languages. In Section 2.1,

some notations that are used in this thesis are given. In Section 2.2, a hierarchical catego-

rization basing on generative grammars of languages is introduced with related definitions. In

Section 2.3, we survey some decision problems. The remaining chapters will follow the defi-

nitions and notations in this chapter, and we will assume that the information in this chapter is

known.

2.1 Notations

The notation in this thesis follows the style of [93]. An alphabet Σ is a finite nonempty set of

letters. A word over the alphabet Σ contains some letters from Σ, and the word with zero letters

is the empty word λ. Nβ
a denotes the number of occurrences of the letter a in the word β. The

number of letters in a word β is its length and is denoted by |β|. The empty word λ is a special

word with |λ| = 0. The infinite set W(Σ) contains all the words over an alphabet Σ. A language

L over an alphabet Σ is a subset of W(Σ), so L ∈ 2W(Σ). A language L which does not contain

the empty word λ is said to be λ-free. The letter at the position i of the word α is denoted by

α(i). A language can be represented by listing all of its words, by specifying word properties,

by a generative device, or by a recognition device. We also need the following definitions.

Let α = a1a2...an be a word over an alphabet Σ. The reverse of the word α is denoted by

αr = anan−1...a1, and the reverse of the empty word λ is λ.

Given two words α, β, their concatenation is denoted by αβ. Given a word α, the word

obtained by concatenating α for i times is denoted by αi, where α0 = λ. The concatenation

closure of a word α is defined by α∗ =
⋃

i≥0 α
i.

The set of positive integers is denoted by N+, and the set of natural numbers is denoted

3
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by N . Moreover, sets with different names are assumed to be disjoint; otherwise, this can be

achieved by renaming elements in those sets.

2.2 The Chomsky Hierarchy of Languages

Languages can be classified according to the properties of their generative grammars, and the

most used such classification is the Chomsky hierarchy [13]. First, we define grammars and

the languages generated by grammars.

Definition 2.2.1 ([93]) A grammar is a quadruple G = (VN ,VT , X0, F), where VN is the non-

terminal alphabet, VT is the terminal alphabet, X0 ∈ VN is the initial symbol, and F is the set

of production rules of the form α→ β, where α, β are words over the alphabet VN ∪ VT , and α

contains at least one non-terminal letter.

Next, we define the derivations of words according to a grammar G = (VN ,VT , X0, F).

Let α, α1, α2, β be words over the alphabet VN ∪ VT . A word α1αα2 derives another word

α1βα2 in one step, denoted by α1αα2 ⇒ α1βα2, according to the production rules in F if and

only if there is a rule α→ β in F.

Let k be a natural number, and αi, 0 ≤ i ≤ k, be words over the alphabet VN ∪ VT . A word

α0 derives another word αk, denoted by α0 ⇒
∗ αk, according to the production rules in F if

and only if α0 ⇒ α1 ⇒ ... ⇒ αk−1 ⇒ αk according to the production rules in F. Note that if

k = 0, no derivations happen, and this indicates a derivation of length 0. Moreover,⇒∗ is the

reflexive transitive closure of⇒.

With this definition of derivations, we can show how a word is generated by a grammar

G = (VN ,VT , X0, F). A word α over the terminal alphabet VT is said to be generated by the

grammar G = (VN ,VT , X0, F) if and only if X0 ⇒
∗ α according to the production rules in F.

The language generated by the grammar, denoted by L(G), is the set of the words over the

terminal alphabet VT that can be derived from X0 according to the production rules in F.

Example The grammar G = (VN ,VT , X0, F) generates all the binary numbers, where:

VN = {X0},

VT = {0, 1},

F = {X0 → X01, X0 → X00, X0 → λ}.

The word 10101 can be derived according to the derivation X0 ⇒ X01⇒ X001⇒ X0101⇒

X00101⇒ X010101⇒ 10101.
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By convention, the capital letters represent non-terminal letters, the lowercase letters from

the beginning of the English alphabet represent terminal letters, and the lowercase letters from

the end of the English alphabet and from the Greek alphabet represent words.

2.2.1 The Family of Regular Languages

In this section, we introduce the family of regular languages, whose grammars are most restric-

tive, and it is the smallest family of languages in the Chomsky hierarchy.

Definition 2.2.2 ([93]) A grammar G = (VN ,VT , X0, F) is called a type-3 grammar if and only

if its production rules in F are of the form X → Yα or X → α, where X,Y are letters from the

non-terminal alphabet VN , and α is a word over the terminal alphabet VT .

A language is said to be regular if and only if it can be generated by a type-3 grammar [13].

A type-3 grammar is also called a regular grammar. The family of regular languages contains

exactly all the languages that can be generated by type-3 grammars.

We can assume that the production rules of all regular grammars have at most one terminal

letter due to Lemma 2.2.3.

Lemma 2.2.3 Given a regular grammar G = (VN ,VT , X0, F), a regular grammar G′ can be

constructed such that all the production rules of G′ have at most one terminal letter, where

L(G) = L(G′).

Proof The idea of the proof is as follows.

This is achieved by the construction G′ = (V ′N ,VT , X0, F′), where:

V ′N = VN ∪ {〈X,Y, α〉i | X → Yα ∈ F, |α| ≥ 2, 1 ≤ i < |α|, i ∈ N}

∪ {〈X, α〉i | X → α ∈ F, |α| ≥ 2, 1 ≤ i < |α|, i ∈ N},

F′ = {X → Y ∈ F} ∪ {X → Ya ∈ F} ∪ {X → λ ∈ F} ∪ {X → a ∈ F}

∪ {X → 〈X,Y, α〉1α(1) | X → Yα ∈ F, |α| ≥ 2}

∪ {〈X,Y, α〉i → 〈X,Y, α〉i+1α(i+1) | X → Yα ∈ F, |α| ≥ 3, 1 ≤ i < |α| − 1, i ∈ N}

∪ {〈X,Y, α〉|α|−1 → Yα|α| | X → Yα ∈ F, |α| ≥ 2}

∪ {X → α(1)〈X, α〉1 | X → α ∈ F, |α| ≥ 2}

∪ {〈X, α〉i → 〈X, α〉i+1α(i+1) | X → α ∈ F, |α| ≥ 3, 1 ≤ i < |α| − 1, i ∈ N}

∪ {〈X, α〉|α|−1 → α|α| | X → α ∈ F, |α| ≥ 2}.
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Next, we show some other ways to characterize regular languages. First, we show a type of

recognition devices called non-deterministic finite automata that recognize regular languages.

The following model, which was original proposed to model brain activity, was later formalized

as a non-deterministic finite automaton [77], and it recognizes the family of regular languages.

Definition 2.2.4 ([93]) A non-deterministic finite automaton (NFA) is a quintuple M = (S ,VT ,

s0, A, F), where S is the set of states, VT is the alphabet, s0 ∈ S is the initial state, A ⊆ S is

the set of final states, and F ⊆ {sa → s′ | s, s′ ∈ S , a ∈ VT } ∪ {s → s′ | s, s′ ∈ S } is the set of

transitions.

Next, we show the configurations and derivations of NFAs.

Let M = (S ,VT , s0, A, F) be an NFA. A configuration of the NFA M is a word of the form

sα, where s ∈ S , α ∈ W(VT ). An accepting configuration of M is a word of the form s, where

s ∈ A, and the starting configuration of M with the input word α ∈ W(VT ) is s0α.

Consider states s1, s2 ∈ S , a terminal letter a ∈ VT , and a word α ∈ W(VT ). A configuration

s1aα derives another configuration s2α in one step, denoted by s1aα ⇒ s2α, according to the

transitions in F if and only if there is a transition s1a → s2 ∈ F. Moreover, a configuration

s1α derives another configuration s2α in one step, denoted by s1α ⇒ s2α, according to the

transitions in F if and only if there is a transition s1 → s2 ∈ F.

Consider a number k ∈ N , states si j ∈ S , 0 ≤ j ≤ k, j ∈ N , and words α j ∈ W(VT ), 0 ≤ j ≤

k, j ∈ N . A configuration si0α0 derives another configuration sikαk, denoted by si0α0 ⇒
∗ sikαk,

according to the transitions in F if and only if si0α0 ⇒ si1α1 ⇒ ... ⇒ sik−1αk−1 ⇒ sikαk

according to the transitions in F. Note that if k = 0, no derivations happen, and that indicates

a derivation of length 0.

With this definition of derivations, we can show how a word is recognized by an NFA

M = (S ,VT , s0, A, F).

A word α ∈ W(VT ) is said to be recognized by the NFA M if and only if s0α⇒
∗ s according

to the transitions in F, where s ∈ A. The language recognized by the NFA M, denoted by L(M),

is the set of all the words recognized by the NFA M.

Consider an NFA M = (S ,VT , s0, A, F) and a word α ∈ L(M). The NFA M recognizes α

deriving one of the possibly multiple derivations.

Example Consider the NFA M = ({s0}, {a}, s0, {s0}, {s0 → s0, s0a → s0}) and a word a ∈

L(M) = a∗. The NFA M recognizes a deriving the derivation s0a⇒ s0 or s0a⇒ s0a⇒ s0, etc.

Next, we show that a language can be generated by type-3 grammars if and only if it can

be recognized by NFAs with the help of the following definition and lemma.
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Definition 2.2.5 ([93]) Let Σ be an alphabet. The mirror image of a word α ∈ W(Σ) is defined

by mi(α) = αr. The definition of mirror image can be extended to languages by mi(L) =

{mi(α) | α ∈ L}.

Note that, for all languages L, mi(mi(L)) = L, and for all words α, mi(mi(α)) = α.

Lemma 2.2.6 Let L be a language recognized by an NFA. There exists an NFA that recognizes

the language mi(L).

Proof The idea of the proof is as follows.

Given an NFA M = (S ,VT , s0, A, F), an NFA M′ that has exactly one accepting state which

has no outgoing transitions can be constructed: this NFA is M′ = (S ′,VT , s0, A′, F′), where:

S ′ = S ∪ {sa},

A′ = {sa},

F′ = F ∪ {s→ sa | s ∈ A}.

Given such NFA M′, an NFA Mr that recognizes the language mi(L(M)) can be constructed:

this NFA is Mr = (S ′,VT , sa, Ar, Fr), where:

Ar = {s0},

Fr = {s1a→ s2 | s2a→ s1 ∈ F′}

∪ {s1 → s2 | s2 → s1 ∈ F′}.

On the one hand, the languages recognized by NFAs can be generated by type-3 grammars.

Let M be an NFA, and Mr = (S ,VT , s0, A, F) be the NFA constructed from M according to

Lemma 2.2.6, where L(Mr) = mi(L(M)). A type-3 grammar G = (VN ,VT , Xs0 , F
′) can be

constructed to generate the language L(M) [15], where:

VN = {Xs | s ∈ S },

F′ = {Xs1 → Xs2a | s1a→ s2 ∈ F}

∪ {Xs1 → Xs2 | s1 → s2 ∈ F}

∪ {Xs → λ | s ∈ A}.

Thus, we have that the languages recognized by NFAs can be generated by type-3 grammars.

On the other hand, the languages generated by type-3 grammars can be recognized by

NFAs. Let G = (VN ,VT , X0, F) be a type-3 grammar, and we can assume that there is at
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most one terminal letter in all the production rules due to Lemma 2.2.3. An NFA M =

(S ,VT , sX0 , A, F
′) that recognizes all the words in mi(L(G)) can be constructed, where:

S = {sX | X ∈ VN} ∪ {sA},

A = {sA},

F′ = {sXa→ sY | X → Ya ∈ F}

∪ {sXa→ sA | X → a ∈ F}.

According to Lemma 2.2.6, there exists an NFA M′ that recognizes the language L(G) =

mi(L(M)).

Thus, we have shown that a language can be generated by type-3 grammars if and only if it

can be recognized by NFAs, and it follows that the languages that can be recognized by NFAs

are regular.

Since for all languages L generated by type-3 grammars, there exists an NFA that recog-

nizes the language mi(L), we have the following Corollary.

Corollary 2.2.7 A language L is regular if and only if mi(L) is regular.

Next, we show a restricted version of NFA that also recognizes regular languages [89].

Definition 2.2.8 ([93]) A deterministic finite automaton (DFA) is a quintuple M = (S ,VT , s0,

A, F), where S is the set of states, VT is the alphabet, s0 ∈ S is the initial state, A ⊆ S is the

set of final states, and F ⊆ {sa → s′ | s, s′ ∈ S , a ∈ VT } is the set of transitions. Moreover, F

contains at most one transition sa→ s′ for each pair (s, a), where s, s′ ∈ S , a ∈ VT .

Note that every DFA is a NFA. Thus, the configurations and derivations of DFAs can be

defined similarly as NFAs. A word α ∈ W(VT ) is said to be recognized by an DFA M =

(S ,VT , s0, A, F) if and only if s0α ⇒
∗ s according to the transitions in F, where s ∈ A. The

language recognized by the DFA M, denoted by L(M), is the set of all the words recognized

by the DFA M.

Consider a DFA M = (S ,VT , s0, A, F) and a word α ∈ L(M). The DFA M recognizes α

deriving exactly one possible derivation which is of length |α|.

A DFA M = (S ,VT , s0, A, F) is said to be complete if F contains exactly one transition

sa → s′ for each pair (s, a), where s, s′ ∈ S , a ∈ VT . A state is called a sink state if and only if

no final states can be reached from it.

Let M be a DFA, and L = L(M) be the language recognized by the DFA M. The DFA

M is called the minimal DFA for L if there does not exist any other DFA M′ recognizing

the language L that has less states than the DFA M. Note that for any language that can be
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recognized by a DFA, its minimal DFA is unique because this can be achieved by renaming

states.

Next, we show that a language can be recognized by NFAs if and only if it can be recognized

by DFAs.

For the direct implication, the languages recognized by NFAs can be recognized by DFAs.

Given an NFA M = (S ,VT , s0, A, F), the DFA M′ = (2S ,VT , s′0, A
′, F′) can be constructed such

that L(M′) = L(M) using the subset construction [69]. Let S 1, S 2 ∈ 2S be subsets of S , and

a ∈ VT be a letter. We have that S 1a→ S 2 ∈ F′ if and only s1a→ s2 for all s1 ∈ S 1, s2 ∈ S 2.

Conversely, DFAs are NFAs. Thus, a language can be recognized by NFAs if and only if

it can be recognized by DFAs, and it follows that a language is regular if and only if it can be

recognized by DFAs.

s0start

s1

s2 NFA M

0

0, 1

0, 1

01

〈s0〉start

〈s2〉

〈s1, s2〉

〈s1〉

〈s0, s2〉

DFA M′

1

0

0

0

1

1

0

1

0

Figure 2.1: The DFA M′ is constructed from the NFA M using the subset construction, where

L(M′) = L(M), and each state of the DFA M′ represents a nonempty subset of the set of states

of the NFA M

Example As shown in the Figure 2.1, using the subset construction method, the NFA M =

(S ,VT , s0, A, F) can be converted to the DFA M′ = (S ′,VT , 〈s0〉, A′, F′), where:

S = {s0, s1, s2},

VT = {0, 1},
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A = {s2},

F = {s00→ s1, s00→ s2, s01→ s2, s10→ s2, s11→ s2, s11→ s0, s20→ s1},

S ′ = {〈s0〉, 〈s1〉, 〈s2〉, 〈s0, s2〉, 〈s1, s2〉},

A′ = {〈s0, s2〉, 〈s1, s2〉},

F′ = {〈s0〉0→ 〈s1, s2〉, 〈s0〉1→ 〈s2〉, 〈s1〉0→ 〈s2〉, 〈s1〉1→ 〈s0, s2〉, 〈s2〉0→ 〈s1〉}

∪ {〈s0, s2〉0→ 〈s1, s2〉, 〈s0, s2〉1→ 〈s2〉, 〈s1, s2〉0→ 〈s1, s2〉, 〈s1, s2〉1→ 〈s0, s2〉}.

Note that NFAs are usually simpler than DFAs recognizing the same language in terms of

the number of states and the number of transitions.

Next, we show another type of grammar that generates regular languages.

Definition 2.2.9 ([35]) A grammar is said to be linear if and only if its production rules are of

the form X → αYβ or X → γ, where X,Y are letters from the non-terminal alphabet VN , and

α, β, γ are words over the terminal alphabet VT . It is said to be left-linear (resp. right-linear)

if and only if all of the words α (resp. β) are λ.

Note that left-linear grammars are type-3 grammars.

Next, we show that a language is regular if and only if it can be generated by a right-linear

grammar.

First, we show that regular languages can be generated by right-linear grammars. Let G be

a type-3 grammar, there exists a type-3 grammar Gr = (VN ,VT , X0, F) that generates mi(L(G))

according to Corollary 2.2.7. A right-linear grammar G′ that generates the language L(G) can

be constructed, and this is achieved by the construction G′ = (VN ,VT , X0, {X → αr | X → α ∈

F} ∪ {X → αrY | X → Yα ∈ F}).

Next, we show that languages that can be generated by right-linear grammars are regular.

Let G = (VN ,VT , X0, F) be a right-linear grammar, and we can assume that there is at most one

terminal letter in all the production rules in F using a similar construction in Lemma 2.2.3. An

NFA M that recognizes L(G) can be constructed, and this is achieved by constructing the NFA

M = (S ,VT , sX0 , A, F
′), where:

S = {sX | X ∈ VN} ∪ {sA},

A = {sA},

F′ = {sXa→ sY | X → aY ∈ F, X,Y ∈ VN , a ∈ VT }

∪ {sXa→ sA | X → a ∈ F, X ∈ VN , a ∈ VT }.

Using these constructions, we have that a language is regular if and only if it can be gener-

ated by a right-linear grammar.
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Next, we show that a language is regular if and only if it can be denoted by expressions

called regular expressions. First, we define regular expressions and some related operations.

Definition 2.2.10 ([93]) Given two languages L1 and L2, their union is defined by L1 ∪ L2 =

{α | α ∈ L1 or α ∈ L2}.

Definition 2.2.11 ([93]) The definition of concatenation can be extended to languages natu-

rally by L1L2 = {αβ | α ∈ L1, β ∈ L2}.

Definition 2.2.12 ([93]) The concatenation closure L∗ of a language L can be defined recur-

sively as L∗ = {λ} ∪ {α | α ∈ L} ∪ {αβ | α, β ∈ L∗}.

Definition 2.2.13 ([93]) Let V,V ′ = {∪, ∗, ∅, (, )} be two alphabets. A word α over the alphabet

V ∪ V ′ is a regular expression over V if and only if

• α is a letter of V or the letter ∅, or

• α is of the form (β ∪ γ), (βγ), or β∗ where β, γ are regular expressions over V.

Next, we show what is the language denoted by a regular expression α over an alphabet V

as follows.

• If α = ∅, L(∅) = ∅, which is the empty language.

• If α = a, a ∈ V , L(a) = {a}, which is the language containing only the word a.

• If α = (βγ), where β, γ are regular expressions over the alphabet V , L((β ∪ γ)) = L(β) ∪

L(γ), which is the union of two languages L(β) and L(γ).

• If α = (βγ), where β, γ are regular expressions over the alphabet V , L((βγ)) = L(β)L(γ),

which is the concatenation of two languages L(β) and L(γ).

• If α = β∗, where β is a regular expression over the alphabet V , L(β∗) = L(β)∗, which is

the concatenation closure of the language L(β).

A language L over an alphabet V is said to be denoted by a regular expression α over the

alphabet V if and only if L = L(α). A language is regular if and only if it can be denoted by a

regular expression [61], and this can be proved using the construction in [100].

Next, we show a language operation, and we can represent the result of the operation on

regular languages by regular expressions.
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Definition 2.2.14 ([93]) Consider an alphabet V, a set of alphabets {Va | a ∈ V}, and a set

of languages {σ(a) ∈ 2Va | a ∈ V}. Substitution is an operation that substitutes every letter

a ∈ V in a word with the language σ(a). The image of the substitution σ on words is defined

recursively by σ(λ) = λ, σ(αβ) = σ(α)σ(β). The image of the substitution σ on a language L

is defined by σ(L) = {α | α ∈ σ(β) for some β ∈ L}.

We can prove the next lemma using regular expressions.

Lemma 2.2.15 Consider a regular language L over an alphabet Σ, a set of regular languages

La over the alphabet Σ for a ∈ Σ, and a substitution σ defined by σ(a) = La for a ∈ Σ. We have

that σ(L) is a regular language.

Proof Given a regular language L denoted by a regular expression R and a substitution σ

with a set of regular expressions {Ra | a ∈ VT , σ(a) = L(Ra)}, a regular expression R′ can be

constructed by replacing each letter a in R by Ra. It is easy to see that R′ is a regular expression,

and R′ denotes the language σ(L). Thus, we have that σ(L) is regular.

The following proposition summarizes the different methods mentioned in this subsection

to specify a regular language.

Proposition 2.2.16 The following statements about a language L are equivalent.

• L is regular.

• There exists a type-3 grammar that generates L.

• There exists an NFA that recognizes L.

• There exists a DFA that recognizes L.

• There exists a right-linear grammar that generates L.

• There exists a regular expression that denotes L.

Next, we show a family of languages that is included in the family of regular languages.

A language is said to be finite if and only if it contains a finite number of words. We have

the following proposition.

Proposition 2.2.17 All finite languages are regular.

Proof Let Σ be an alphabet, L be a finite language with n ∈ N words. We consider the

following cases.
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• If n = 0, L = ∅, which is regular.

• If n = 1, L = {α} = L(α), which is regular.

• If n ≥ 2, L = {αi ∈ Σ∗ | 1 ≤ i ≤ n, i ∈ N} = L(βn), where βi = (αi ∪ βi−1) for i ∈ N , i ≥ 3,

and β2 = (α1 ∪ α2), which is regular.

Next, we show that the family of regular languages does not contain all the possible lan-

guages over a given alphabet.

Example The language L = {anbn | n ∈ N} is not regular.

The following lemma, called the pumping lemma for regular languages, gives us a method

for showing that a language is not regular.

Lemma 2.2.18 ([89]) If L is a regular language, then there exists a number k ∈ N+ such that

for all words w ∈ L whose length is at least k, there exists a decomposition of w = xyz, where

the length of the word xy is at most k, the word y is not an empty word, and the word xyqz is in

the regular language L for any number q ∈ N .

The proof is based on the idea that given a regular language L, a DFA M = {S ,VT , s0, A, F}

that recognizes the language L, and a word α ∈ L, if |α| ≥ |S |, there is a state that is visited at

least twice in the derivation of α; otherwise, the length of the word α would be less than |S |.

Then, there is a loop in the derivation of α, and the loop should happen in the first |S | visited

states. The basic idea behind the pumping lemma for regular languages is that removing or

adding more copies of such loop part of the derivation still results in a derivation for a word in

L.

Example The pumping lemma can be used, for example, to show that the language L = {anbn |

n ∈ N} is not regular because of the word akbk cannot be pumped and still belongs to the

language L.

2.2.2 The Family of Context-Free Languages

In this section, we introduce the family of context-free languages, which contains all regular

languages and the language L = {anbn | n ∈ N}.

Definition 2.2.19 ([93]) A grammar G = (VN ,VT , X0, F) is called a type-2 grammar if and

only if its production rules in F are of the form X → α, where X is a letter from the non-

terminal alphabet VN , and α is a word over the alphabet VT ∪ VN .
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A language is said to be context-free if and only if it can be generated by a type-2 gram-

mar [13]. A type-2 grammar is also called a context-free grammar. Note that all regular gram-

mars are type-2 grammars, so all regular languages are context-free. The family of context-free

languages contains exactly all the languages that can be generated by type-2 grammars.

Example The language L = {anbn | n ∈ N} can be generated by the type-2 grammar G =

(VN ,VT , X0, F), where:

VN = {X0},

VT = {a, b},

F = {X0 → aX0b, X0 → λ}.

Thus, if follows that L is context-free.

Note that there are no restrictions on the forms of the right hand side of production rules

in F in the definition. However, there are two commonly used normal forms of context-free

grammars, the Chomsky normal form and the Greibach normal form, that have restrictions on

the form of the production rules in F.

Definition 2.2.20 ([13]) A type-2 grammar G = (VN ,VT , X0, F) is said to be in the Chomsky

normal form if and only if its production rules are of the form X → a or X → YZ, where

a ∈ VT , X,Y,Z ∈ VN .

Definition 2.2.21 ([40]) A type-2 grammar G = (VN ,VT , X0, F) is said to be in Greibach nor-

mal form if and only if its production rules are of the form X → aβ, where a ∈ VT , X ∈ VN , β ∈

V∗N .

Note that for all context-free languages L, there exists a context-free grammar G in the

Chomsky normal form or the Greibach normal form that generates exactly the language L\{λ}.

Thus, we have the following corollary.

Corollary 2.2.22 Given a context-free language L, there exists a context-free grammar such

that all the production rules of this grammar have at most one terminal letter.

Proof Given a context-free language L, there exists a context-free grammar G = (VN ,VT , X0,

F) in the Chomsky normal form that generate the language L\{λ}. If L is λ−free, L = L(G);

otherwise, L = L(G′), where G′ = (VN ,VT , X0, F ∪ {X0 → λ}). In both cases, all the production

rules of the grammar have at most one terminal letter.
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Next, we show another way to characterize context-free languages, by recognition devices

called pushdown automata that can recognize exactly context-free languages [97].

Definition 2.2.23 ([93]) A pushdown automaton (PDA) is a septuple M = (S ,VI ,VZ, z0, s0, A,

F), where S is the set of states, VI is the input alphabet, VZ is the stack alphabet, z0 ∈ VZ

is the initial stack letter, s0 ∈ S is the initial state, A ⊆ S is the set of final states, and

F ⊆ {zsia→ αs j | z ∈ VZ, a ∈ VI , α ∈ V∗Z, si, s j ∈ S } ∪ {zsi → αs j | z ∈ VZ, α ∈ V∗Z, si, s j ∈ S } is

the set of transitions.

Note that a PDA is basically an NFA with a stack. Consider a PDA that has a production

rule zsia → αs j. If the letter at the top of its stack is z, and the input letter is a, it can change

its current state from si to s j and pushes α into the stack after z is removed from the top of the

stack. Moreover, consider a PDA has a production rule zsi → αs j, if the letter at the top of

its stack is z, it can change its current state from si to s j and pushes α into the stack after z is

removed from the top of the stack.

Let M = (S ,VI ,VZ, z0, s0, A, F) be a PDA. A configuration of the PDA is a word of the form

βsα, where s ∈ S , α ∈ V∗I , β ∈ V∗Z. Note that β is the word on the stack with the rightmost letter

at the top of the stack. The initial configuration of M with input word α ∈ V∗I is the word z0s0α.

An accepting configuration is a word of the form βs, where s ∈ A, β ∈ V∗Z.

Consider states s1, s2 ∈ S , a stack letter z ∈ VZ, an input letter a ∈ VI , and stack words

γ, β ∈ V∗Z. A configuration βzs1aα derives another configuration βγs2α in one step, denoted by

βzs1aα ⇒ βγs2α, according to the transitions in F if and only if there is a transition zs1a →

γs2 ∈ F. Moreover, a configuration βzs1α derives another configuration βγs2α in one step,

denoted by βzs1α⇒ βγs2α, according to the transitions in F if and only if there is a transition

zs1 → γs2 ∈ F.

Consider a number k ∈ N , states si j ∈ S , 0 ≤ j ≤ k, j ∈ N , input words α j ∈ V∗I for

0 ≤ j ≤ k, j ∈ N , and stack words β j ∈ V∗Z, 0 ≤ j ≤ k, j ∈ N . A configuration β0si0α0 derives

another configuration βksikαk, denoted by β0si0α0 ⇒
∗ βksikαk, according to the transitions in F

if and only if β0si0α0 ⇒ β1si1α1 ⇒ ...⇒ βk−1sik−1αk−1 ⇒ βksikαk according to the transitions in

F. Note that if k = 0, no derivations happen, and this indicates a derivation of length 0.

A word α ∈ V∗I is said to be recognized by a PDA M = (S ,VI ,VZ, z0, s0, A, F) if and only if

z0s0α ⇒
∗ βs according to the transitions in F, where s ∈ A, β ∈ V∗Z. The language recognized

by the PDA M, denoted by L(M), is the set of all the words recognized by the PDA M.

Example The language L = {anc+bn | n ∈ N+} can be recognized by the PDA M = (S ,VI ,VZ,

e, s0, A, F) illustrated in Figure 2.2, where:

S = {s0, s1, s2, s3},
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VI = {a, b, c},

VZ = {d, e},

A = {s3},

F = {es0a→ eds0, ds0a→ dds0, ds0c→ ds1, ds1c→ ds1, ds1b→ s2, ds2b→ s2, es2 → s3}.

s0start s1 s2 s3

a/e/ed

a/d/dd

c/d/d b/d/λ

c/d/d b/d/λ

λ/e/λ

Figure 2.2: A PDA that recognizes the language {anc+bn | n ∈ N+}

Next, we show that a language can be generated by type-2 grammars if and only if it can

be recognized by PDAs.

For the direct implication, consider the derivations of a word by a type-2 grammar. If we

apply the production rules to the rightmost non-terminal letter in each step, the derivation can

be modeled by a stack. Thus, we can convert a type-2 grammar to a PDA using the following

construction.

Given a type-2 grammar G = (VN ,VT , X0, F), a PDA M that recognizes the language L(G)

can be constructed: this PDA is M = (S ,VT ,VZ, X0, s, A, F′), where:

S = {s},

VZ = VT ∪ VN ,

A = {s},

F′ = {asa→ s | a ∈ VT }

∪ {Xs→ αs | X → α ∈ F, α ∈ (VN ∪ VT )∗}.

Thus, we have that languages generated by type-2 grammars can be recognized by PDAs.

Conversely, languages recognized by PDAs can be generated by type-2 grammars, which can

be proven using the following lemma.

Lemma 2.2.24 ([90]) Let M = (S ,VI ,VZ, z0, s0, A, F) be a PDA, and # < VZ be a special stack

letter. A PDA M′ = (S ′,VI ,VZ ∪ {#}, z′0, ss, {sa}, F′) that recognizes L(M) can be constructed,

where
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• the initial state ss is visited only once in any derivation,

• the initial state ss transits to another state leaving # on the stack without reading any

input letters, and

• all transitions into the final state sa pop the special letter # and read no input letters.

Proof The idea of the proof is as follows.

Let M = (S ,VI ,VZ, z0, s0, A, F) be a PDA. A PDA M′ = (S ′,VI ,V ′Z, #, ss, A′, F′) that recog-

nizes the language L(M) and fulfills the conditions can be constructed, where:

S ′ = S ∪ {ss, sa, s1},

V ′Z = VZ ∪ {#},

A = {sa},

F′ = F ∪ {#s→ sa | s ∈ A}

∪ {as→ s1 | a ∈ VZ, s ∈ A ∪ {s1}}

∪ {#s1 → sa}

∪ {#ss → #z0s0}.

For the language L recognized by an arbitrary PDA M = (S ,VI ,VZ, s0, A, F), a PDA

M′ = (S ∪ {ss, sa, s1},VI ,VZ ∪ {#}, #, ss, {sa}, F′) that recognizes L can be constructed using

the construction in the proof for Lemma 2.2.24. Based on the PDA M′, a context-free grammar

G = (VN ,VI , X0, F) that generates exactly the language L can be constructed [90], where

VN = {〈si, a, s j〉 | si, s j ∈ S ∪ {ss, sa, s1}, a ∈ VZ ∪ {#}}

∪ {〈si, λ, s j〉 | si, s j ∈ S ∪ {ss, sa, s1}}

∪ {X0},

F = {X0 → 〈s0, #, sa〉}

∪ {〈si, a, s j〉 → c〈sk, λ, s j〉 | asic→ sk ∈ F′, s j ∈ S ∪ {ss, sa, s1}}

∪ {〈si, a, s j〉 → c〈sk, b, s j〉 | asic→ bsk ∈ F′, s j ∈ S ∪ {ss, sa, s1}}

∪ {〈si, a, s j〉 → c〈si, b0, sk1〉〈sk1 , b1, sk2〉...〈skn , bn, s j〉 | asic→ b0b1...bnsk ∈ F′,

sk1 , sk2 , ..., skn ∈ S , s j ∈ S ∪ {ss, sa, s1}, n ≥ 1}

∪ {〈s, λ, s〉 → λ | s ∈ S ∪ {ss, sa, s1}}.

The above constructions show that a language can be generated by type-2 grammars if and

only if it can be recognized by PDAs [97], and it follows that a language is context-free if and

only if it can be recognized by PDAs. We have the following proposition.
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Proposition 2.2.25 The following statements about a language L are equivalent.

• L is context-free.

• There exists a type-2 grammar that generates L.

• There exists a PDA that recognizes L.

Thus, L = {anc∗bn | n ∈ N+} is a context-free language since it can be recognized by the

PDA in Figure 2.2.

By Definition 2.2.9, it follows that type-2 grammars are linear. Next, we introduce another

restriction related to context-free grammars.

Definition 2.2.26 ([13]) Consider a context-free grammar G = (VN ,VT , X0, F). This grammar

is said to be self-embedding if and only if there exists a non-terminal letter X ∈ VN such that

X ⇒∗ αXβ, where α, β ∈ {VN ∪ VT }
+.

The definition of self-embedding is extended to a context-free language based on the gram-

mars that generate this language.

Definition 2.2.27 ([93]) A context-free language L is said to be self-embedding if and only if

all context-free grammars that generate the language L are self-embedding.

Let G = (VN ,VT , X0, F) be a context-free grammar. Without loss of generality, we can

assume that, for any non-terminal letter X ∈ VN , there exists a derivation X0 ⇒
∗ αXβ, where

α, β ∈ (VN ∪ VT )∗; otherwise, everything related to X can be removed because X is not used in

any derivations. Next, we show that a context-free language is not self-embedding if and only

if it is regular.

Proposition 2.2.28 ([3, 47]) Context-free languages that are not self-embedding are regular.

Proof For the direct implication, context-free languages that are not self-embedding are reg-

ular. Let G = (VN ,VT , X0, F) be a type-2 grammar that is not self-embedding. There are two

cases to consider: whether or not every non-terminal letter X ∈ VN can derive X0 in a derivation

X ⇒∗ αX0β, where α, β ∈ (VN ∪ VT )∗.

Consider the case where every non-terminal letter X ∈ VN can derive a word containing

X0 according to the production rules in F. For all X ∈ VN , all the production rules that are

used in the derivation X ⇒∗ αX0β, where α, β ∈ (VN ∪ VT )∗, and have non-terminal letters on

their right-hand side can be of the form X → αYβ, X → αY , X → Yβ, or X → Y , where

Y ∈ VN , α, β ∈ (VT ∪ VN)+.
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Note that the production rules F do not contain any rules of the form X → αYβ; otherwise,

G is self-embedding because of the derivation of the form X ⇒∗ α1Yβ1 ⇒
∗ α2X0β2 ⇒

∗ α3Xβ3,

where α1, α2, α3, β1, β2, β3 ∈ (VN ∪ VT )+.

If the production rules contain one rule of the form X → αY , we have that α ∈ V+
T , α ∈

VNV∗T , or α ∈ V+
T VN(VN ∪ VT )∗. If α ∈ V+

T VN(VN ∪ VT )∗, G is self-embedding as shown above;

if α ∈ VNV∗T , α = Zγ, where Z ∈ VN , γ ∈ V∗T , G is self-embedding because of the derivation

of the form X ⇒∗ α1Zβ1Y ⇒∗ α2X0β2X0 ⇒
∗ α3Zβ3Yγ3X0 ⇒

∗ α4Zβ4X0γ4X0 ⇒
∗ α5Zβ5Xγ5X0,

where αi, βi, γ j ∈ (VN ∪ VT )∗ for 1 ≤ i ≤ 5, 3 ≤ j ≤ 5. Thus, if the production rules contain one

rule of the form X → αY , G is right-linear, and L(G) is regular.

Similarly, if the production rules contain one rule of the form X → Yβ, G is left-linear, and

L(G) is regular. Thus, if every non-terminal letter X ∈ VN can derive a word containing X0,

L(G) is regular.

Now consider the case where there is a non-terminal letter X ∈ VN that cannot derive any

word containing X0. We want to prove by induction that if there are n ∈ N+ non-terminal

letters, among which there exists a non-terminal letter X ∈ VN that cannot derive a word con-

taining X0, L(G) is a regular language.

If n = 1, X0 ⇒
∗ X0, so it is vacuously true that G is regular. Assume the statement holds

for a grammar G with k ≥ 1 non-terminal letters. Consider now a grammar G with k + 1 non-

terminal letters, and among them, a non-terminal letter X1 cannot derive a word containing

X0.

Let G1 = (VN1 ,VT , X1, F1) be the grammar that generates exactly all the words that can be

derived from X1, where:

VN1 = VN\{X0},

F1 = {X → α ∈ F | X ∈ VN\{X0}, α ∈ ((VN\{X0}) ∪ VT )∗}.

Let G2 = (VN2 ,VT2 , X0, F2) be the grammar that generates exactly all the words that treat X1 as

a terminal letter, where:

VN2 = VN\{X1},

VT2 = VT ∪ {X1},

F2 = F\{X1 → α | α ∈ (VN ∪ VT )∗}.

We have that L(G1), L(G2) are regular because of the induction assumption or the other case.

Let σ be a substitution defined by σ(X1) = L(G1), σ(a) = a for a ∈ VT . We have that

L(G) = σ(L(G2)), and L(G) is regular due to Lemma 2.2.15.

Thus, we have that context-free languages that are not self-embedding are regular, and the

other implication is trivial.
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Next, we show another method to represent the derivations of type-2 grammars using parse

trees.

Definition 2.2.29 ([90]) A rooted, ordered tree is called a parse tree for a type-2 grammar

G = (VN ,VT , X0, F) if and only if

• every internal node is labeled with a non-terminal letter,

• its root is labeled with the initial non-terminal letter X0,

• every leaf node is labeled with a terminal letter or λ, and

• if there is a production rule X → y1y2...yn ∈ F, every internal node labeled with a non-

terminal letter X has child nodes labeled with y1, y2, ..., yn, in this order, from its left-hand

side to its right-hand side .

We define a function f : t → V∗T , where t are roots of parse trees for type-2 grammars.

For a parse tree with root t, we have that f (t) reads terminal letters labeling leaf nodes of the

parse tree t in preorder, where the parent node is visited first, then its children are visited in a

left-to-right order [63]. Note that there may exist different derivations of a word by a type-2

grammar, and it follows that there may exist different parse trees of a word generated by a

type-2 grammar. Moreover, for all words generated by a type-2 grammar, there is a minimum

parse tree: a parse tree such that there are no other parse trees having fewer nodes.

Example The derivation X0 ⇒ aX0b ⇒ aaX0bb ⇒ aabb of the word aabb by the type-2

grammar G = {{X0}, {a, b}, X0, {X0 → aX0b, X0 → λ}} can be represented by the parse tree in

Figure 2.3.

X0 X0

b

a

X0

b

a

λ

Figure 2.3: A parse tree that represents the derivation X0 ⇒ aX0b ⇒ aaX0bb ⇒ aabb of the

word aabb generated by a type-2 grammar for {anbn | n ∈ N}
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Next, we have the following proposition for the special case where the size of the alphabet

of a context-free language is 1.

Proposition 2.2.30 ([79]) All context-free languages over an alphabet of size 1 are regular.

Proof The branching factor b of a grammar is the largest number of letters in any right-hand

side of the production rules of this grammar. For any word generated by a type-2 grammar, its

derivation can be represented by a minimum parse tree. This parse tree may or may not contain

a path that contains repeated non-terminal letters from the root to a leaf. Note that by paths, we

mean the shortest path from the root of a parse tree to a leaf if not otherwise specified, and by

parse trees, we mean minimum parse trees.

Consider a context-free grammar G = (VN , {a}, X0, F) with branching factor b, which has

an one-letter alphabet. For any parse tree for the grammar G with root t, if there are no paths

that contain repeated non-terminal letters, the maximum length of f (t) is b|VN |. We use T0 to

denote the set of all such parse trees, and we have that L0 =
⋃

t∈T0
f (t) is a finite language.

The height of a node t′ in a parse tree rooted at t is the number of edges visited in the path

from t to t′. If there is at least one path that contains repeated non-terminal letters, an internal

node t1 labeled by X can be found in a parse tree such that it is the node with maximum height

whose path to a leaf visits nodes labeled by other non-terminal letters at most once and by X

exactly twice. Thus, another node t2 labeled by X can be found in the subtree rooted at t1. We

call t1 the upper repeated node of the tree rooted at t, and t2 the lower repeated node of the tree

rooted at t. Note that for any parse tree not in T0, we can find its upper and lower repeated

nodes.

Consider a parse tree not in T0 rooted at t, which represents a derivation of the form X0 ⇒
∗

α1Xβ1 ⇒
∗ α1α2Xβ2β1 ⇒

∗ α1α2α3β2β1 according to G, where X ∈ VN , α1, α2, α3, β2, β1 ∈ a∗.

Note that α2β2 , λ; otherwise, t is not a minimum parse tree. Note also that α1α2α3β2β1 ∈

L(G), and it follows that α1α3β1 ∈ L(G) because of the derivation X0 ⇒
∗ α1Xβ1 ⇒

∗ α1α3β1.

This derivation can be represented by the parse tree rooted at t with the subtree rooted at its

upper repeated node t1 replaced by the subtree rooted at its lower repeated node t2. Note that

we can get a parse tree in T0 from the tree not in T0 by repeating this process.

Given a root t of a parse tree, we use g(t) to denote the tree. Given the context-free grammar

G = (VN , {a}, X0, F), VN can be denoted by VN = {Xi | 1 ≤ i ≤ |VN |, i ∈ N}. Consider a subtree

rooted at t labeled by Xi, where t is also its upper repeated node, and the node t′ be its lower

repeated node. This subtree represents a derivation Xi ⇒
∗ αXiβ ⇒

∗ αγβ, where α, β, γ ∈ a∗.

We have the language Li = {αβ | Xi ⇒
∗ αXiβ⇒

∗ αγβ is a derivation represented by a minimal

subtree }. We also have that Li = { f (t) f (t′)−1 | t is the root of a minimal subtree label by Xi, t is
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the upper repeated node, t′ is the lower repeated node}. Note that Li, for 1 ≤ i ≤ |VN |, i ∈ N , is

finite.

Since the alphabet only contains a single letter, the order of the letters in the word does not

matter, and it follows that

L(G) =
⋃

g(t)∈T0

 f (t)

 ⋃
Xi∈g(t)

Li


∗ ,

which is regular.

It follows that if we want to consider a language over an alphabet Σ that is context-free but

not regular, we need to make sure that the size of the alphabet Σ is at least 2.

Definition 2.2.31 ([93]) Two words α and β over an alphabet Σ are said to be letter-equivalent

if and only if Nα
a = Nβ

a for all a ∈ Σ.

Definition 2.2.32 ([93]) Two languages L1 and L2 over an alphabet Σ are said to be letter-

equivalent if and only if for all words α ∈ L1, there exists a word β ∈ L2 such that α and β are

letter-equivalent, and vice versa.

The following generalization of Proposition 2.2.30 can be proven using an approach similar

to the proof of Proposition 2.2.30.

Proposition 2.2.33 ([80]) Let Σ be an alphabet. All context-free languages over Σ have a

letter-equivalent regular language over Σ.

The family of context-free languages does not contain all the possible languages over a

given alphabet because of the language L = {anbncn | n ∈ N}. The following lemma, called the

pumping lemma for context-free languages, gives us a method for showing that a languages is

not context-free.

Lemma 2.2.34 ([3]) If L is a context-free language, then there exists a number k ∈ N+ such

that for all words w whose length is at least k in the context-free language L, there exists a

decomposition of w = uvxyz, where the length of the subword vxy is at most k, vy is not an

empty word, and uvqxyqz is a word in the context-free language L for any number q ∈ N .

Consider a context-free grammar G = (VN ,VT , X0, F) and a word α ∈ L(G) long enough

that the minimum parse tree of α contains a path that has at least two nodes labeled with the

same non-terminal letter. The basic idea behind the pumping lemma for context-free languages

is that removing or adding more copies of subwords, generated by a derivation between two

repeated non-terminal letters, still results in a word in L.
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Example The language L = {anbncn | n ∈ N} is not context-free because the word akbkck

cannot be pumped and still belongs to the language L.

A lemma called Ogden’s lemma, which is more restrictive than Lemma 2.2.34, can also be

used to prove that a language is not context-free [78].

2.2.3 The Family of Context-Sensitive Languages

In this section, we introduce the family of context-sensitive languages, which contains all

context-free languages and the language L = {anbncn | n ∈ N}.

Definition 2.2.35 ([93]) A grammar G = (VN ,VT , X0, F) is called a type-1 grammar if and

only if its production rules are of the form α1Xα2 → α1βα2, where X ∈ VN , α1, α2, β ∈ (VN ∪

VT )∗, β , λ. Moreover, if X0 → λ is included in F, then X0 does not occur in the right-hand

side of any production rules in F.

A language is said to be context-sensitive if and only if it can be generated by a type-1 gram-

mar [13]. A type-1 grammar is also called a context-sensitive grammar. Note that all context-

free grammars are type-1 grammars, so all context-free languages are context-sensitive. The

family of context-sensitive languages contains exactly all the languages that can be generated

by type-1 grammars.

Example The language L = {anbncn | n ∈ N} can be generated by the type-1 grammar G =

(VN ,VT , X0, F), where:

VN = {A, B,C,D, X,Y, X0},

VT = {a, b, c},

F = {X0 → λ, X0 → D,D→ ABC,D→ ADBC,CB→ CX}

∪ {CX → YX,YX → YC,YC → BC, A→ a}

∪ {aB→ ab, bB→ bb, bC → bc, cC → cc}.

Thus, we have that L is context-sensitive.

Next, we show other ways to characterize context-sensitive languages. First, we show

another type of grammar that generates context-sensitive languages.

Definition 2.2.36 ([14, 93]) A grammar G = {VN ,VT , X0, F} is said to be length-increasing if

and only if all production rules α → β ∈ F have the property that |α| ≤ |β|. Moreover, if

X0 → λ is included in F, then X0 does not occur on the right-hand side of any production rule

in F, and X0 → λ is the only exception to the length restriction.
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With help of the following lemma, we can prove that a language can be generated by a

length-increasing grammar if and only if it is context-sensitive.

Lemma 2.2.37 ([13]) Given a type-1 (length-increasing) grammar G = (VN ,VT , X0, F), a

type-1 (length-increasing) grammar G′ can be constructed such that all production rules con-

taining terminal letters are of the form X → a, where X ∈ VN , a ∈ VT , and G′ generates exactly

the language L(G).

Proof The idea of the proof is as follows.

This is achieved by constructing G′ = (V ′N ,VT , X0, F′) such that

V ′N = VN ∪ {Xa | a ∈ VT },

F′ = {σ(α)→ σ(β) | α→ β ∈ F} ∪ {Xa → a | a ∈ VT },

where σ is a substitution defined by σ(a) = Xa for a ∈ VT , σ(X) = X for X ∈ VN .

Proposition 2.2.38 ([93]) A language can be generated by a length-increasing grammar if and

only if it is context-sensitive.

Proof The idea of the proof is as follows.

Clearly, all context-sensitive grammars are length-increasing by Definition 2.2.35. The

other implication also holds by the following construction.

Given a length-increasing grammar G, where λ < L(G), G′ = {VN ,VT , X0, F} can be con-

structed such that all production rules containing terminal letters are of the form X → a, where

X ∈ VN , a ∈ VT , according to Lemma 2.2.37. If F0 is the set of production rules from F with all

the production rules that do not follow the restrictions in Definition 2.2.35 removed, it follows

that the grammar G0 = {VN ,VT , X0, F0} is context sensitive.

We can put one production rule back using the following construction, where the re-

sulting grammar remains context-sensitive. Let α → β be a production rule in F, where

α = X1...Xm, β = Y1...Yn, 2 ≤ m ≤ n, α, β ∈ V+
N . If we add this production rule to G0, we

have a length-increasing grammar G′0 = {VN ,VT , X0, F0 ∪ {α → β}}, and a context-sensitive

grammar G1 = {V ′N ,VT , X0, F0 ∪ F′0} that generates exactly the language L(G′0), where

V ′N = VN ∪ {Zi | 1 ≤ i ≤ m},

F′0 = {X1X2...Xm → Z1X2...Xm,Z1X2...Xm → Z1Z2X3...Xm, ...,Z1Z2...Zm−2Xm1 Xm → Z1Z2...Zm−1

Xm,Z1Z2...Zm−1Xm → Z1Z2...ZmYm+1Ym+2...Yn}

∪ {Z1Z2...ZmYm+1Ym+2...Yn → Y1Z2...ZmYm+1Ym+2...Yn,Y1Z2...ZmYm+1Ym+2...Yn → Y1Y2...Zm

Ym+1Ym+2...Yn, ...,Y1Y2...Ym−2Zm1ZmYm+1Ym+2...Yn → Y1Y2...YmYm+1Ym+2...Yn}.
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We can repeat this process until all the removed production rules are replaced, and construct

a context-sensitive grammar Gn that generates exactly the language L(G).

Next, we show another way to characterize context-sensitive languages by a recognition

device called linear bounded automaton that recognizes context-sensitive languages [64].

Definition 2.2.39 ([93]) A linear bounded automaton (LBA) is a sextuple M = (S ,VI ,VT , s0,

A, F), where S is the set of states, VI ⊆ VT is the input alphabet, VT is the tape alphabet, s0 ∈ S

is the initial state, A ⊆ S is the set of final states, and F ⊆ {sia → s jb | si, s j ∈ S , a, b ∈

VT } ∪ {sia → as j | si, s j ∈ S , a ∈ VT } ∪ {csia → s jca | si, s j ∈ S , a, c ∈ VT } is the set of

transitions. In addition, for each triple (si, a, s j), where si, s j ∈ S , a ∈ VT , the set of transitions

F either contains no rules of the form csia→ s jca or contains all rules of the form csia→ s jca

for all c ∈ VT .

An LBA is basically an NFA with a tape of limited space, that is, the size of the tape is

always the length of the input word. Initially, the reading position of an LBA is at the first

letter of the input if the input is not λ, and its transitions are related to its movements on the

tape or rewriting the tape, where

• a transition of the form sia→ s jb means that the LBA can rewrite the current position of

tape from a to b and change its state from si to s j,

• a transition of the form sia → as j means that the LBA can move one step right on the

tape and change its state from si to s j, and

• a transition of the form csia → s jca means that the LBA can move one step left on the

tape and change its state from si to s j.

Note that the last sentence in Definition 2.2.39 means that an LBA may or may not move,

and if it moves left, it can move left only based on the current state and the letter at the current

position on the tape, independently of what the left context is.

Next, we define configurations and derivations of LBAs.

Let M = (S ,VI ,VT , s0, A, F) be an LBA. A configuration of the LBA M is a word of the

form αsβ, where s ∈ S , α, β ∈ V∗T . The initial configuration of M is a word of the form s0β,

where β ∈ V∗I is the input word on the tape. An accepting configuration is a word of the form

αs, where α ∈ V∗T , s ∈ A.

The cases where a configuration derives another configuration are summarized as follows:

• a configuration αsiaβ derives αs jbβ in one step, denoted by αsiaβ ⇒ αs jbβ, according

to the transitions in F if and only if there is a transition sia→ s jb ∈ F;
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• a configuration αsiaβ derives αas jβ in one step, denoted by αsiaβ ⇒ αas jβ, according

to the transitions in F if and only if there is a transition sia→ as j ∈ F;

• a configuration αcsiβ derives αs jcβ in one step, denoted by αcsiβ⇒ αsicβ, according to

the transitions in F if and only if there is a transition csia→ s jca ∈ F.

Consider a number k ∈ N , states si j ∈ S for 0 ≤ j ≤ k, j ∈ N , and tape words α j, β j ∈ V∗T
for 0 ≤ j ≤ k, j ∈ N . A configuration α0si0β0 derives another configuration αksikβk, denoted by

α0si0β0 ⇒
∗ αksikβk, according to the transitions in F if and only if α0si0β0 ⇒ α1si1β1 ⇒ ... ⇒

αk−1sik−1βk−1 ⇒ αksikβk according to the transitions in F. Note that if k = 0, no derivations

happen, and this indicates a derivation of length 0.

A word β ∈ V∗I is said to be recognized by an LBA M = (S ,VI ,VT , s0, A, F) if and only if

s0β ⇒
∗ αs, where α ∈ V∗T , s ∈ A. The language recognized by the LBA M, denoted by L(M),

is exactly the set of all the words that are recognized by the LBA M. Note that an LBA M

recognizes λ if and only if s0 ∈ A.

Any context-sensitive grammar G can be converted to an LBA M that recognizes L(G) [64],

and any LBA M can be converted to a type-1 grammar G that generates L(M) [66].

It follows that a language can be generated by type-1 grammars if and only if it can be

recognized by LBAs, and we also have that a language is context-sensitive if and only if it can

be recognized by LBAs.

Example The language L = {[anbncn] | n ∈ N} can be recognized by the LBA M = (S ,VI ,VT ,

s0, A, F), where:

S = {si | i ∈ N , 0 ≤ i ≤ 7},

VI = {a, b, c, [, ]},

VT = {a, b, c, d, [, ]},

A = {s7},

F = {s0[→ [s1}

∪ {s1d → ds1, s1a→ s2d, s2d → ds3, s3a→ as3}

∪ {s3d → ds3, s3b→ s4d, s4d → ds5, s5b→ bs5}

∪ {s5d → ds5, s5c→ s6d}

∪ {es6 f → s6e f | e, f ∈ VT }

∪ {s6[→ s0[, s1]→]s7}.

This LBA can reach its final state if the input is of the form [a∗b∗c∗], and the numbers of

occurrences of a, b, c are same. Since this language L can be recognized by this LBA, it follows

that the language L is context-sensitive.
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We have now introduced type-1 grammars, length-increasing grammars and LBAs, and we

have the following proposition.

Proposition 2.2.40 The following statements about a language L are equivalent.

• L is context-sensitive.

• There exists a type-1 grammar that generates L.

• There exists a length-increasing grammar that generates L.

• There exists an LBA that recognizes L.

The family of context-sensitive languages does not contain all the possible languages over

a given alphabet VT , and this can be proven by diagonalization. Consider a method to encode

context-sensitive grammars G = (VN ,VT , X0, F) and words over the alphabet VT . We can

enumerate words α1, α2, ... over the alphabet VT in lexicographical order and the encodings of

context-sensitive grammars G1,G2, ... in lexicographical order. Consider a language L = {αi |

αi < L(Gi), i ≥ 1, i ∈ N}. Since L is at least one word different from any context-sensitive

language, it follows that L is not context-sensitive.

2.2.4 The Family of Recursively Enumerable Languages

In this section, we introduce the family of recursively enumerable languages, which contains

all languages that can be generated by grammars.

Definition 2.2.41 ([93]) A grammar G = (VN ,VT , X0, F) is called a type-0 grammar if and

only if there are no restrictions on the production rules in F.

A language is said to be recursively enumerable if and only if it can be generated by a

type-0 grammar [13]. A type-0 grammar is also called a recursively enumerable grammar.

The family of recursively enumerable languages contains exactly all the languages that can be

generated by type-0 grammars.

Next, we show another way to describe recursively enumerable languages: a recognition

device called Turing machine that can recognize recursively enumerable languages [93, 101].

Definition 2.2.42 ([93]) A Turing machine (TM) is a septuple M = (S ,VI ,V1,VT , s0, A, F),

where S is the set of states, VT is the tape alphabet, # ∈ VT is the tape boundary marker,

V1 = VT − {#} is a non-empty alphabet, VI ⊂ V1 is the input alphabet, s0 ∈ S is the initial state,

A ⊆ S is the set of final states, � ∈ V1 denotes an empty cell on the tape, and F ⊆ {sia→ s jb |
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si, s j ∈ S , a, b ∈ V1} ∪ {siac → as jc | si, s j ∈ S , a, c ∈ V1} ∪ {sia# → as j�# | si, s j ∈ S , a ∈

V1} ∪ {csia → s jca | si, s j ∈ S , a, c ∈ V1} ∪ {#sia → #s j�a | si, s j ∈ S , a ∈ V1} is the set of

transitions.

In addition, for each triple (si, a, s j), where si, s j ∈ S , a ∈ V1, the set of transitions F either

contains no rules of the form siac→ as jc and sia#→ as j�# (csia→ s jca and #sia→ #s j�a)

or contains all rules of the form siac → as jc and sia# → as j�# (csia → s jca and #sia →

#s j�a) for all c ∈ V1.

Moreover, for each pair (si, a), where si ∈ S , a ∈ V1, there is at most one transition of the

form sia#→ as j�#, #sia→ #s j�a and sia→ s jb in F, where s j ∈ S , b ∈ V1.

Note that a TM is basically a DFA with a tape of infinite space, so we need a special marker

# to mark the boundaries of the part of the tape that we use. Moreover, its transitions are related

to its movements on the tape or rewriting the tape, where:

• a transition of the form sia → s jb means that the TM can rewrite the current position of

tape from a to b and change its state from si to s j,

• a transition of the form siac → as jc means that the TM can move one step right on the

tape and change its state from si to s j,

• a transition of the form sia#→ as j�# means that the TM can move one step right on the

tape, extend its workspace, and change its state from si to s j,

• a transition of the form csia → s jca means that the TM can move one step left on the

tape and change its state from si to s j, and

• a transition of the form #sia → #s j�a means that the TM can move one step left on the

tape, extend its workspace, and change its state from si to s j.

Note that either a TM cannot move left (resp. right), or it can move left (resp. right),

depending on the current letter read from the tape and the current state, independent of what

the left (resp. right) context is. In addition, there is at most one transition that can be applied

in each step.

Next, we define configurations and derivations of TMs.

Let M = (S ,VI ,V1,VT , s0, A, F) be a TM. A configuration of the TM M is a word of the

form #αsβ#, where s ∈ S , α, β ∈ V∗1 . The initial configuration of M is a word of the form #s0β#,

where β ∈ V∗I is the input word on the tape. An accepting configuration is a word of the form

#αsβ#, where s ∈ A is an accepting state, and no more transitions can be applied to #αsβ#.

The cases where a configuration derives another configuration are summarized as follows:
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• a configuration #αsiaβ# derives #αs jbβ# in one step, denoted by #αsiaβ# ⇒ #αs jbβ#,

according to the transitions in F if and only if there is a transition sia→ s jb ∈ F;

• a configuration #αsiaβ# derives #αas jβ# in one step, denoted by #αsaβ# ⇒ #αas jβ#,

according to the transitions in F if and only if there is a transition sia→ as j ∈ F;

• a configuration #αsia# derives #αas j�# in one step, denoted by #αsia# ⇒ #αas j�#,

according to the transitions in F if and only if there is a transition sia#→ as j�# ∈ F;

• a configuration #αcsiaβ# derives #αs jcaβ# in one step, denoted by #αcsiaβ#⇒ #αs jcaβ

#, according to the transitions in F if and only if there is a transition csia→ s jca ∈ F;

• a configuration #siaβ# derives #�s jaβ# in one step, denoted by #siaβ# ⇒ #�s jaβ#,

according to the transitions in F if and only if there is a transition #sia→ #s j�a ∈ F.

Consider a number k ∈ N , states si j ∈ S , 0 ≤ j ≤ k, j ∈ N , and tape words α j, β j ∈

V∗1 , 0 ≤ j ≤ k, j ∈ N . A configuration #α0si0β0# derives another configuration #αksikβk#,

denoted by #α0si0β0#⇒∗ #αksikβk#, according to the transitions in F if and only if #α0si0β0#⇒

#α1si1β1#⇒ ...⇒ #αk−1sik−1βk−1#⇒ #αksikβk# according to the transitions in F.

A word β over the input alphabet VI is said to be recognized by a TM M = (S ,VI ,V1,VT , s0,

A, F) if and only if s0β ⇒
∗ αsβ′, where αsβ′ is an accepting configuration. The language

recognized by the TM, denoted by L(M), is the set of all the words that are recognized by the

TM M.

Next, we show that a language can be generated by type-0 grammars if and only if it can

be recognized by TMs.

Given a type-0 grammar G = (VN ,VT , X0, F), a TM can be constructed to rewrite the initial

tape of #X0# according to production rules in F. Thus, if a language can be generated by a

type-0 grammar, it can be recognized by TMs. Next, we show the other implication.

Given a TM M = (S ,VI ,V1,VT , s0, A, F), a type-0 grammar G that generates exactly the

language L(M) can be constructed. This is achieved by constructing G = (VN ,VI , X0, F′),

where:

VN = S ∪ (VT − VI) ∪ {X0, X1, X2},

F′ = {α→ β | β→ α ∈ F} ∪ {X0 → #X2, X2 → X1#, #→ λ, #s0 → λ}

∪ {X2 → bX2 | b ∈ V1} ∪ {X2 → s1# | s1 ∈ A} ∪ {X1 → X1b | b ∈ V1}

∪ {X1 → s1a | a ∈ V1, s1 ∈ A, s1a⇒ ∅ according to transitions in F}.

Thus, we have that if a language can be recognized by TMs, it can be generated by type-

0 grammars, and it follows that a language can be recognized by TMs if and only if it is

recursively enumerable. To summarize, we have the following proposition.
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Proposition 2.2.43 The following statements about a language L are equivalent.

• L is recursively enumerable.

• There exists a type-0 grammar that generates L.

• There exists a TM that recognizes L.

Next, we show that by adding some restrictions to type-0 grammars G, the languages L(G)

they generate are context-sensitive.

Definition 2.2.44 ([93]) Consider a derivation D : X0 = α0 ⇒ α1 ⇒ ... ⇒ αn = α according

to a grammar G = (VN ,VT , X0, F). The workspace of α of the derivation D is defined by

WS G(P,D) = max{|αi| | 0 ≤ i ≤ n}. The workspace of α ∈ L(G) is defined by WS G(P) =

min{WS G(α,D) | D is a derivation of α according to the grammar G}.

Proposition 2.2.45 ([52]) Given a type-0 grammar G = (VN ,VT , X0, F), there exists a number

p ∈ N such that WS G(α) ≤ p|α| for all α ∈ L(G), then L(G) is context-sensitive.

The following two corollaries follow Proposition 2.2.38, where languages generated by

length-increasing grammars are context-sensitive.

Corollary 2.2.46 Let L be a recursively enumerable language over an alphabet Σ, a, b < Σ be

two letters, and σ be the substitution defined by σ(a) = σ(b) = λ and σ(c) = c for c ∈ Σ. A

context-sensitive language L′ ⊆ a∗bL can be constructed, and L = σ(L′).

Proof Given a type-0 grammar G = (VN ,VT , X0, F) be a type-0 grammar. This is achieved by

constructing G = (V ′N ,V
′
T , X

′
0, F

′), where:

V ′N = VN ∪ {X′0,Y},

V ′T = VT ∪ {a, b},

F′ = {X′0 → bX0,Yb→ ab}

∪ {α→ Y |α|−|β|β | α→ β ∈ F, |α| > |β|}

∪ {α→ β ∈ F | |α| ≤ |β|}

∪ {cY → Yc | c ∈ VN ∪ VT ∪ {b}}.

Since G is a length-increasing grammar, the language L(G) is context-sensitive according to

Proposition 2.2.38. It is easy to see that L(G) becomes L if all the letters a, b are removed.

Corollary 2.2.47 Let L be a recursively enumerable language over an alphabet Σ, a, b < Σ be

two letters, and σ be the substitution defined by σ(a) = σ(b) = λ and σ(c) = c for c ∈ Σ. A

context-sensitive language L′ ⊆ Lba∗ can be constructed, and L = σ(L′).
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2.2.5 Summary

Now, we have presented a brief review of the families of languages in the Chomsky hierarchy.

The family of regular (resp. context-free, context-sensitive, recursively enumerable) languages

can be denoted byL3 (resp. L2,L1,L0). Because of the restrictions of the grammars that gener-

ate languages in these families, we have that L3 ⊂ L2 ⊂ L1 ⊂ L0. Notice that these inclusions

are strict, as shown in the previous subsections. Also, we can also use FIN,REG,CF,CS ,RE

to denote the family of finite, regular, context-free, context-sensitive, and recursively enumer-

able languages respectively. Moreover, the family of languages that can be generated by linear

grammars is denoted by LIN. The families of languages in the Chomsky hierarchy are also

called the Chomsky families of languages.

2.3 Decidability

In this section, we discuss the decidability of problems related to the families of languages

defined above. We first introduce some common problems about languages, including the:

• Membership problem(α ∈ L?): Given a language L, is the word α in the language L?

• Emptiness problem(L = ∅?): Given a language L, is it empty?

• Finiteness problem(|L| = ∞?): Given a language L, does it contain infinite many words?

• Totality problem(L = Σ∗?): Given a language L over the alphabet Σ, does it contain all

the possible words?

• Equality problem(L1 = L2?): Given two languages L1, L2, are they the same?

Definition 2.3.1 A problem is decidable if and only if, for any instance of the problem, there is

an algorithm that outputs “yes” or “no”.

Example The membership problem for regular languages recognized by DFAs is decidable,

because for any DFA M and any word α, Algorithm 1 outputs “yes” if α ∈ L(M) and “no”

otherwise.

The decidability of problems about regular and context-free languages are summarized in

Table 2.1 [90].

If a problem is decidable, an algorithm exists. The algorithm can be used as a subroutine

when designing new algorithms to prove the decidability of other problems. Thus, we can use

proof by contradiction to prove the undecidability of problems.
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Input: A DFA M and a word α

Output: “Yes” if α ∈ L(M) and “no” otherwise

Run M on input word α;

if M results into an accepting configuration then
Return “Yes”;

else
Return “No”;

end
Algorithm 1: An algorithm that decides the membership problem for languages recognized

by DFAs M, and words α

α ∈ L? L = ∅? |L| = ∞? L = Σ∗? L1 = L2?

L3 Yes Yes Yes Yes Yes

L2 Yes Yes Yes No Yes

Table 2.1: Summary of decidability of problems about regular and context-free languages

Example The problem “Is a given context-free language L regular?” is undecidable. If we

assume that we could decide if a context-free language is regular, then Algorithm 2 would be

able to decide the totality problem for context-free languages, which is a contradiction.

Input: A context-free language L over an alphabet Σ

Output: “Yes” if L = Σ∗ and “no” otherwise

if L is a regular language then
if L = Σ∗ then

Return “Yes”;

else
Return “No”;

end
else

Return “No”;

end
Algorithm 2: A putative algorithm that decides whether a context-free language L is L = Σ∗
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Word Operations

Word and language operations have been extensively studied in formal language theory, and

some commonly used operations are surveyed in this section. In Section 3.1, some classical op-

erations originating from set, linguistics and rewriting devices are surveyed, and in Section 3.2,

variations of inserting words into words and deleting words from words are studied. We show

their definitions and the closure properties of Li, 0 ≤ i ≤ 3, under these operations. Such op-

erations include union, concatenation, concatenation closure, substitution, complementation,

intersection, and generalized sequential machine mapping.

Definition 3.0.1 A languages L is said to be closed under an operation � if and only if appli-

cation of the operation � on words in the language L always produces a word in the language

L.

Example The language L = a∗ is closed under concatenation.

Definition 3.0.2 A family of languages L is said to be closed under an operation � if and only

if application of the operation � on languages in the family L always produces a language in

the family L.

Example For any language L ∈ L3, mi(L) is also regular due to Corollary 2.2.7, so L3 is

closed under mirror image.

Let L,R be known languages, X,Y be unknown languages, and � be a binary word opera-

tion. Given equations of the form X � L = R or L � Y = R, we want to know if there exists

a solution and how to construct the solutions to these equations. These problems are studied

with the help of the left and right inverse of binary word operations defined in Section 3.3.

Let L be a family of languages that is closed under some operations. We can prove that

L is also closed under a new operation by showing that the new operation can be represented

33
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as a composition of those old operations. This idea raises the study of the abstract families of

languages, and it is introduced in Section 3.4.

Let � be an operation under which L3 is closed. For any regular language L1, L2, we

can construct a DFA that recognizes the language generated by L1 � L2, where � is a binary

operation, and by �(L1), where � is a unary operation. In Section 3.5, we study a type of

descriptional complexity, called state complexity, of such operations � on regular languages.

Recall that by Lemma 2.2.37, we can assume that for type-1 (length-increasing) grammars

G = (VN ,VT , X0, F), all production rules that contain terminal letters a ∈ VT are of the form

X → a, where X ∈ VN . This can be extended to context-free and recursively enumerable

grammars using the same construction, and we have the following Lemma.

Lemma 3.0.3 For a language L generated by a context-free (resp. length-increasing, context-

sensitive, and recursively enumerable) grammar, there exists a context-free (resp. length-

increasing, context-sensitive, and recursively enumerable) grammar G = (VN ,VT , X0, F) that

generates the language L, and all the production rules in F containing terminal letters are of

the form X → a, where X ∈ VN , a ∈ VT .

3.1 Classical Operations

In this section, some classical word and language operations are defined, and closure properties

of the Chomsky families of languages under these operations are summarized. The word and

language operations covered in this section are:

• some operations which are defined to manipulate words, such as concatenation, concate-

nation closure, λ−free concatenation closure, mirror image, substitution, regular substi-

tution, λ−free substitution, λ−free regular substitution, homomorphism, λ−free homo-

morphism, linear erasing, restricted homomorphism, inverse homomorphism, left quo-

tient, left derivative, right quotient, right derivative, (proper) prefix, (proper) suffix, and

(proper) infix;

• some operations which are associated with a variation of NFA, such as generalized se-

quential machine mapping and λ−free generalized sequential machine mapping;

• some set operations which can be applied to languages naturally because languages are

sets of words, such as union, complementation, intersection, and set difference.
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Union [93] Union is an operation defined on sets and can thus be applied to languages. As

shown in Definition 2.2.10, given two languages L1 and L2, their union is defined by L1 ∪ L2 =

{α | α ∈ L1 or α ∈ L2}. All families Li, 0 ≤ i ≤ 3, are closed under union.

Indeed, given two grammars G1 = (VN1 ,VT1 , X01 , F1) and G2 = (VN2 ,VT2 , X02 , F2), where

L(G1), L(G2) ∈ Li, 0 ≤ i ≤ 3, there exists a grammar G that generates exactly L(G1) ∪ L(G2),

and L(G) ∈ Li. This grammar is G = (VN ,VT , X0, F), where:

VN = VN1 ∪ VN2 ∪ {X0},

VT = VT1 ∪ VT2 ,

F = F1 ∪ F2 ∪ {X0 → X01 , X0 → X02}.

Note that for the context-sensitive case, if L(G1) is not λ-free, the grammar G is not a type-

1 grammar because of X01 → λ, X0 → X01 which violates the restriction in Definition 2.2.35.

Thus, if L(G1) or L(G2) is not λ-free, there exists a type-1 grammar G that generates exactly

L(G1) ∪ L(G2). This grammar is G = (VN ,VT , X0, F), where:

VN = VN1 ∪ VN2 ∪ {X0},

VT = VT1 ∪ VT2 ,

F = F1\{X01 → λ}

∪ F2\{X02 → λ}

∪ {X0 → X01 , X0 → X02 , X0 → λ}.

Concatenation [93] Consider two words α and β over an alphabet Σ. Their concatenation is

denoted by αβ, which is also a word over Σ, and this definition can be extended to languages,

where L1L2 = {αβ | α ∈ L1, β ∈ L2} as shown in Definition 2.2.11. A semigroup is a set

endowed with an associative operation, and the semigroup becomes a monoid if the set has

an identity element for this operation. Thus, the set of words over an alphabet Σ with the

concatenation operation is a monoid because concatenation is associative (αβ)γ = α(βγ) and

because λ ∈ Σ∗ is the identity for this operation λα = α = αλ. All families Li, 0 ≤ i ≤ 3, are

closed under concatenation, as outlined next.

For L3, this can be trivially proven by the definition of regular expressions. Also, it can be

proven by construction. Given two DFAs M1 = (S 1,VT , s01 , A1, F1) and M2 = (S 2,VT , s02 , A2,

F2), there exists an NFA M that M recognizes L(M1)L(M2). This NFA is M = (S ,VT , s01 , A2,

F), where:

S = S 1 ∪ S 2,

F = F1 ∪ F2 ∪ {s→ s02 | s ∈ A1}.
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Consider two grammars G1 = (VN1 ,VT1 , X01 , F1) and G2 = (VN2 ,VT2 , X02 , F2), where L(G1),

L(G2) ∈ Li, 0 ≤ i ≤ 2, there exists a grammar G that generates exactly L(G1)L(G2), where

L(G) ∈ Li. This grammar is G = (VN ,VT ,Y0, F), where:

VN = VN1 ∪ VN2 ∪ {Y0},

VT = VT1 ∪ VT2 ,

F = F1 ∪ F2 ∪ {Y0 → X01 X02}.

Note that for the context-sensitive case, if L(G1) is not λ-free, the grammar G is not a type-

1 grammar because of X01 → λ, X0 → X01 which violates the restriction in Definition 2.2.35.

Thus, we use the following construction to avoid applying concatenation on context-sensitive

languages that are not λ-free.

• If L1 is not λ−free and L2 is λ−free, L1L2 = (L1\{λ})L2 ∪ L2.

• If L1 is λ−free and L2 is not λ−free, L1L2 = L1(L2\{λ}) ∪ L1.

• If L1, L2 are not λ−free, L1L2 = (L1\{λ})(L2\{λ}) ∪ (L1\{λ}) ∪ (L2\{λ}) ∪ {λ}.

Note that given a context-sensitive language L, which is generated by the type-1 gram-

mar G = (VN ,VT , X0, F) and is not λ-free, the context-sensitive grammar G′ = (VN ,VT , X0,

F\{X0 → λ}) generates the λ−free language L(G)\{λ}. Since L1 is closed under union, it

follows that it is closed under concatenation.

Concatenation Closure [93] As shown in Section 2.1, the concatenation closure of a word

α is defined by α∗ =
⋃

i≥0 α
i, where α0 = λ. As shown in Definition 2.2.12, the concatenation

closure L∗ of a language L can be defined recursively as L∗ = {λ}∪{α | α ∈ L}∪{αβ | α, β ∈ L∗}.

If we denote the set {α1α2...αi | α1, α2, ..., αi ∈ L, i ∈ N+} by Li, and L0 = {λ}, then the con-

catenation closure L∗ of a language L can also be defined by L∗ =
⋃∞

i=0 Li. The concatenation

closure of a language is also called the Kleene star or the iteration of a language. All families

Li, 0 ≤ i ≤ 3, are closed under concatenation closure.

For L3, this can be trivially proven by the definition of regular expressions. Also, it can be

proven by construction. Given a regular grammar G = (VN ,VT , X0, F), where all the production

rules in F have at most one terminal letter due to Lemma 2.2.3, a grammar G′ = (VN ,VT , X0, F∪

{X → X0a | X → a ∈ F} ∪ {X → X0 | X → λ ∈ F} ∪ {X0 → λ}) can be constructed such that G′

generates exactly L(G)∗.

Given a context-free grammar G = (VN ,VT , X0, F), a context-free grammar G′ = (VN ∪

{Y0},VT ,Y0, F ∪ {Y0 → λ,Y0 → Y0X0}) can be constructed such that G′ generates exactly

L(G)∗.
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To prove that L0,L1 are closed under concatenation closure using a similar approach to

that of L2, the boundaries between occurrences of the language L in Li need to be marked;

otherwise, a production rule may be applied with its left-hand side coming from different oc-

currences of the language L due to the same terminal alphabet VT and non-terminal alphabet

VN .

Example Consider the type-0 grammar G = ({a, b}, {X0, X1}, X0, {X0 → X1X1X1, X1 → a, X1X1

→ b}) that generates the language L(G) = {aaa, ab, ba}. Its concatenation closure is L(G)∗ =

{aaa, ab, ba}∗. If we use a similar construction to that ofL2, the grammar G′ = ({X0, X1,Y0}, {a,

b},Y0, {X0 → X1X1X1, X1 → a, X1X1 → b,Y0 → λ,Y0 → Y0X0}) can be constructed. However,

G′ generates the word bbb < L(G)∗ by the derivation Y0 ⇒ Y0X0 ⇒ Y0X0X0 ⇒ X0X0 ⇒

X0X1X1X1 ⇒ X1X1X1X1X1X1 ⇒ bX1X1X1X1 ⇒ bbX1X1 ⇒ bbb. Thus, this construction

cannot be used without modification.

We will employ instead the following construction. For a context-sensitive (resp. recur-

sively enumerable) grammar G, regardless of whether L(G) is λ−free or not, the concatenation

closure L(G)∗ always contains the empty word λ, so L(G)∗ = L(G′)∗, where L(G′) = L(G)\{λ}.

Given an arbitrary context-sensitive grammar G = (VN ,VT , X0, F), the context-sensitive

grammar G′ = (VN ,VT , X0, F\{X0 → λ}) generates the language L(G)\{λ}. Given an arbi-

trary recursively enumerable grammar G = (VN ,VT , X0, F), where all the production rules in

F containing terminal letters are of the form X → a due to Lemma 3.0.3, there exists a recur-

sively enumerable grammar G′ = (VN ,VT , X0, F′) generates the language L(G)\{λ}, and this is

achieved by the construction: F′ = (F\{X → λ ∈ F}) ∪ {XY → Y,YX → Y | X → λ ∈ F,Y ∈

VN}.

Consider a context-sensitive (resp. recursively enumerable) language L, and a context-

sensitive (resp. recursively enumerable) grammar G = (VN ,VT , X0, F) that generates the lan-

guage L\{λ}, where all the production rules in F containing terminal letters are of the form

X → a due to Lemma 3.0.3. We can now construct the context-sensitive (resp. recur-

sively enumerable) grammar G′ that generates exactly L(G)∗. This is achieved by constructing

G′ = (V ′N ,VT ,Y0, F′), where:

V ′N = VN ∪ {Y0,Y1},

F′ = F ∪ {Y0 → λ,Y0 → X0,Y0 → Y1X0}

∪ {Y1a→ Y1X0a | a ∈ VT }

∪ {Y1a→ X0a | a ∈ VT }.

In this construction, the non-terminal letter Y1 makes sure that the letter immediately beside
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X0, on the right, is a terminal letter, so non-terminal letters from different derivations of L do

not interfere with each other.

λ-Free Concatenation Closure [93] The λ-free concatenation closure of a word α is denoted

by α+ = {αi | i ∈ N+}. The λ-free concatenation closure of a language L+ can be defined

recursively as L+ = {α | α ∈ L} ∪ {αβ | α, β ∈ L+}.

Alternatively, L+ =
⋃∞

i=1 Li. If a language L is not λ−free, L+ = L∗; otherwise, L+ = L∗\{λ}.

The λ-free concatenation closure of a language is also called the Kleene plus of L. All families

Li, 0 ≤ i ≤ 3, are closed under λ-free concatenation closure.

Given a regular expression R, the regular expression (R)∗(R) denotes the regular language

L(R)+. If the language L generated by a context-free (resp. context-sensitive, recursively enu-

merable) grammar G is λ− free, a similar grammar G′ to the grammar constructed for concate-

nation closure, but without the production rule Y0 → λ, generates exactly the λ− free context-

free (resp. context-sensitive, recursively enumerable) language L+; otherwise, the same con-

struction to that of concatenation closure can be used.

Mirror Image [93] Let Σ be an alphabet. As shown in Definition 2.2.5, the mirror image of

a word α = a1a2...ak, where ai ∈ Σ, 1 ≤ i ≤ k, is defined by mi(α) = akak−1...a2a1,mi(λ) = λ,

and the mirror image of a language L is defined by mi(L) = {mi(α) | α ∈ L}. Note that

α = mi(mi(α)), L = mi(mi(L)), where α ∈ Σ∗, L ⊆ Σ∗. A word α or a language L is said to be

palindromic if and only if its mirror image is itself, that is mi(α) = α or mi(L) = L. All families

Li, 0 ≤ i ≤ 3, are closed under mirror image.

Indeed, L3 is closed under mirror image due to Corollary 2.2.7.

Given a context-free (resp. context-sensitive, recursively enumerable) grammar G = (VN ,

VT , X0, F), where all the production rules in F containing terminal letters are of the form

X → a due to Lemma 3.0.3, the context-free (resp. context-sensitive, recursively enumer-

able) grammar G′ generates the language mi(L(G)). This is achieved by constructing G′ =

(VN ,VT , X0, {α→ β | mi(α)→ mi(β) ∈ F, α, β ∈ V∗N} ∪ {X → a ∈ F | X ∈ VN , a ∈ VT }).

Substitution [93] As shown in Definition 2.2.14, substitution, σ : V∗ → 2V′∗ , where V ′ =⋃
a∈V Va, is an operation that substitutes every letter a from the alphabet V with a language σ(a)

over the alphabet Va. Substitution is defined recursively by σ(λ) = λ, σ(αβ) = σ(α)σ(β). The

substitution of a language L is defined by σ(L) = {α | α ∈ σ(β) for some β ∈ L}. Note that

substitution is associative. A substitution σ is said to be regular (resp. context-free, context-

sensitive, recursively enumerable) if and only if the languageσ(a) is regular (resp. context-free,

context-sensitive, recursively enumerable), for all a ∈ V . A family of languages is said to be
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closed under substitution if and only if whenever L is in the family and σ is a substitution such

that each σ(a) is in the family, then σ(L) is also in the family. All families Li, i = 0, 2, 3, are

closed under substitution, but L1 is not closed under substitution.

Indeed, L3 is closed under substitution due to Lemma 2.2.15.

Given a context-free language L generated by the context-free grammar G = (VN , VT , X0,

F), where all the production rules in F containing terminal letters are of the form X → a

due to Lemma 3.0.3, and a context-free substitution σ with the languages generated by the

context-free grammars {Ga | Ga = (Va
N ,V

a
T , X

a
0 , F

a), a ∈ VT }, the context-free grammar G′ that

generates exactly the language σ(L) can be constructed. This is achieved by the construction

G′ = (V ′N ,V
′
T , X0, F′), where:

V ′N = VN ∪
⋃
a∈VT

Va
N ,

V ′T =
⋃
a∈VT

Va
T ,

F′ = F\{X → a | X ∈ VN , a ∈ VT }

∪ {X → Xa
0 | X → a ∈ F, X ∈ VN , a ∈ VT }

∪
⋃
a∈VT

Fa.

According to Corollary 2.2.46, a context-sensitive language L′ can be constructed from any

recursively enumerable language L over an alphabet Σ, which contains words of the form a∗bα,

where α ∈ L. Note now that σ(L′) = L, where the context-sensitive substitution σ is defined

by σ(a) = σ(b) = λ, σ(c) = c for c ∈ Σ, so L1 is not closed under substitution.

Given a recursively enumerable language L and a recursively enumerable substitution σ,

the boundary between different substitutions needs to be marked; otherwise, a production rule

in the substitution may be applied with its left-hand side coming from different substitutions

due to the same non-terminal alphabet Va
N for the substitution of the same terminal letter a.

Example Consider the type-0 grammar G = ({X0, X1}, {a}, X0, {X0 → X1X1, X1 → a}) that gen-

erates the language L(G) = {aa}. Let σ be the substitution of a with the language generated

by Ga = ({Xa
0}, {a}, X

a
0 , {X

a
0 → aa, Xa

0 Xa
0 → a}). The result of applying this substitution on

L(G) is σ(L(G)) = {aaaa}. If we use the similar construction as for L2, the grammar G′ =

({X0, X1, Xa
0}, {a}, {X0 → X1X1, X1 → Xa

0 , X
a
0 → aa, Xa

0 Xa
0 → a}) would be constructed. How-

ever, G′ generates the word a < σ(L(G)) by the derivation X0 ⇒ X1X1 ⇒ Xa
0 X1 ⇒ Xa

0 Xa
0 ⇒ a.

We will employ instead the following construction. Consider a recursively enumerable

language L generated by the recursively enumerable grammar G = (VN ,VT , X0, F), and a re-

cursively enumerable substitution σ with languages generated by the recursively enumerable
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grammars {Ga | Ga = (Va
N ,V

a
T , X

a
0 , F

a), a ∈ VT }. We assume that all the production rules in

these grammar containing terminal letters are of the form X → a due to Lemma 3.0.3. The re-

cursively enumerable grammar G′ that generates exactly the language σ(L) can be constructed.

This is achieved by the construction G′ = (V ′N ,V
′
T ,Y0, F′), where:

V ′N = VN ∪ {Y0,Y}

∪ {Aa | a ∈ VT }

∪
⋃
a∈VT

Va
N ,

V ′T =
⋃
a∈VT

Va
T ,

F′ =
⋃
a∈VT

F i

∪ F\{X → a | X ∈ VN , a ∈ VT }

∪ {X → Aa | X → a ∈ F, a ∈ VT }

∪ {YAa → YXa
0 | a ∈ VT }

∪ {Ya→ aY | a ∈
⋃
a∈VT

Va
T }

∪ {Y0 → YX0,Y → λ}.

In this construction, the non-terminal Y makes sure that no non-terminal letters from different

substitutions exist at the same time.

Regular Substitution [93] Given a language L over an alphabet Σ, if all the substitution

languages σ(ai), where ai ∈ Σ, 0 ≤ i ≤ |Σ|, are regular, the substitution σ(L) is called a regular

substitution. Using the same constructions and counterexample respectively as those in the

proofs of the closure of the Chomsky families of languages under substitution, all families Li,

i = 0, 2, 3, are closed under regular substitution, butL1 is not closed under regular substitution.

λ-Free Substitution [93] Given a language L over an alphabet Σ, if all the substitution lan-

guages σ(a), where a ∈ Σ, are λ−free, the substitution is called a λ-free substitution. All

families Li, 0 ≤ i ≤ 3, are closed under λ-free substitution.

Indeed, for Li, i = 0, 2, 3, their closure under λ-free substitution can be proven using the

same constructions as those in the proofs of their closure under substitution.

Given a context-sensitive language L generated by a context-sensitive grammar G, a re-

cursively enumerable grammar G′ = (VN ,VT , X0, F) can be constructed in the same way as in
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the substitution proof for L0. Because all substitution languages, as well as L, are context-

sensitive, their grammars are length-increasing. Thus, the only production rule of G′ that is not

length-increasing is Y → λ. According to Proposition 2.2.45, since no words with two occur-

rences of Y can be derived according to G′, a constant p = 2 exists such that WS G′(α) ≤ p|α|

for all nonempty words α ∈ L(G′), so we have that L(G′) is a context-sensitive language, and

G′ generates exactly the language σ(L).

λ-Free Regular Substitution [93] Given a language L over an alphabet Σ, if all the substitu-

tion languages σ(a), where a ∈ Σ, are λ−free and are regular, the substitution is called a λ-free

regular substitution. Using the same construction, respectively, as in the proofs of the closure

of the Chomsky families of languages under λ-free substitution, all families Li, 0 ≤ i ≤ 3, are

closed under λ-free regular substitution.

Homomorphism [93] Given a language L over an alphabet Σ, if all the substitution languages

σ(a), where a ∈ Σ, only contain a single word, the substitution is called a homomorphism.

Using the same construction and counterexample respectively as in the proofs of the closure

of the Chomsky families of languages under substitution, all families Li, i = 0, 2, 3, are closed

under homomorphism, but L1 is not closed under homomorphism.

λ-free Homomorphism [93] Given a language L over an alphabet Σ, if all the substitution

languages from σ(a), where a ∈ Σ, only contain a non-empty single word, the substitution is

called a λ-free homomorphism. Using the same construction respectively as in the proofs of

the closure of the Chomsky families of languages under λ-free substitution, all families Li,

0 ≤ i ≤ 3, are closed under λ-free homomorphism.

Linear Erasing [93] Given a language L over an alphabet Σ and a homomorphism h, if there

exists k ∈ N such that |α| ≤ k|h(α)|, for all words α ∈ L, then the homomorphism h is called

a k-linear erasing with respect to L. A family of languages L is said to be closed under linear

erasing if and only if h(L) ∈ L for all L ∈ L and for all k−linear erasings h, where k ∈ N . All

families Li, 0 ≤ i ≤ 3, are closed under linear erasing.

Indeed, all families Li, i = 0, 2, 3, are closed under linear erasing because they are closed

under arbitrary homomorphism.

Let L be a context-sensitive language generated by the context-sensitive grammar G =

(VN ,VT , X0, F), where all the production rules in F containing terminal letters are of the form

X → a due to Lemma 3.0.3, and h be a k-linear erasing with respect to L for some fixed k ≥ 0. If

k = 0, we have that L = {λ} or L = ∅ which are both context-sensitive. If k ≥ 1, the recursively
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enumerable grammar G′ = (VN ,V ′T , X0, F′) can be constructed such that L(G′) = h(L), where:

V ′T =
⋃
a∈VT

Va
T ,

F′ = F\{X → a | a ∈ VT }

∪ {X → h(a) | X → a ∈ F, X ∈ VN , a ∈ VT }.

Note that, for any non-empty word β ∈ L(G′), there is a word α ∈ L such that h(α) = β.

Since WS G′(β) = max{|α|, |β|} ≤ k ∗ |β|, it follows that L(G′) is context-sensitive according to

Proposition 2.2.45. Thus, L1 is closed under linear erasing.

Restricted Homomorphism [93] Let L be a language over the alphabet Σ, c ∈ Σ be a letter,

k ∈ N+ be a positive integer, and h be a homomorphism defined by h(c) = λ, h(a) = a, for

a ∈ Σ. If ck < inf(L), then the homomorphism h is said to be k-restricted on L. A family of

languages L is said to be closed under restricted homomorphism if and only if h(L) ∈ L for

all L ∈ L and for all k−restricted homomorphism h, where k ≥ 1. For all non-empty words

α ∈ L, we have that |α| ≤ k|h(α)|, and it follows that h is a special case of k−linear erasing with

respect to L. Thus, all families Li, 0 ≤ i ≤ 3, are closed under restricted homomorphism.

Inverse Homomorphism [93] Given two alphabets Σ1,Σ2, a mapping g : Σ∗2 → Σ∗1 is called

an inverse homomorphism if there exists a homomorphism h : Σ∗1 → Σ∗2 such that g(α) = {β ∈

Σ∗1 | h(β) = α, α ∈ Σ∗2}. For a language L over Σ2, we define h−1(L) = g(L) = {β ∈ Σ∗1 | h(β) =

α, α ∈ L}. Given a homomorphism h over an alphabet Σ, if h is a λ-free homomorphism, then

we define that h−1(λ) = λ; otherwise, h−1(λ) = Σ′+, where Σ′ = {a | a ∈ Σ, h(a) = λ}. Thus,

h−1(λ) is regular. All families Li, 0 ≤ i ≤ 3, are closed under inverse homomorphism.

Proposition 3.1.1 ([93]) All families Li, 0 ≤ i ≤ 3, are closed under inverse homomorphism.

Proof The idea of the proof is as follows.

Consider a language L ∈ Li, 0 ≤ i ≤ 3, over an alphabet Σ and an alphabet Σ0 =

{a1, a2, ..., ar}. Let h be a homomorphism mapping Σ∗0 to Σ∗. We want to show that h−1(L) ∈ Li.

Let k = max{|h(a)| | a ∈ Σ0}+1 be a positive integer, and Σ1 = {a′1, a
′
2, ..., a

′
r} be an alphabet,

σ be a λ−free regular substitution defined by σ(a) = Σ∗1aΣ∗1 for all a ∈ Σ, h1 be a λ−free

homomorphism defined by h1(a′i) = ai for 1 ≤ i ≤ r and h1(a) = c for a ∈ Σ, and h2 be a

homomorphism defined by h2(c) = λ and h2(ai) = ai for 1 ≤ i ≤ r.

If L is λ−free, we have that h−1(L) = h2

(
h1

(
σ (L) ∩ {a′ih (ai) | 1 ≤ i ≤ r}∗

))
; otherwise, we

have that h−1(L) = h−1(L − {λ}) ∪ h−1({λ}) = h2

(
h1

(
σ (L) ∩ {a′ih (ai) | 1 ≤ i ≤ r}∗

))
∪ h−1({λ}).

Note that h2 is k−restricted on Lσ = h1

(
σ (L) ∩ {a′ih (ai) | 1 ≤ i ≤ r}∗

)
. Moreover, note that
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h−1({λ}) is regular. Since the families Li, 0 ≤ i ≤ 3, are closed under λ−free regular substi-

tution, restricted homomorphism, union with regular languages, and intersection with regular

languages, it follows that they are closed under inverse homomorphism.

Complementation [48, 64, 93, 98] Because a language can be viewed as a set of strings,

some set operations can also be defined on languages. Given an alphabet Σ and a language

L, the complement of L is defined by ∼ L = {α ∈ Σ∗ | α < L} = Σ∗\L. Both families Li,

i = 1, 3, are closed under complementation, but neither family Li, i = 0, 2, is closed under

complementation.

Indeed, given a regular language L recognized by a DFA M = (S ,Σ, s0, A, F), the DFA

M′ = (S ,Σ, s0, S − A, F) that recognizes the language ∼ L(M) can be constructed.

By De Morgan’s law, L1 ∩ L2 =∼ ((∼ L1) ∪ (∼ L2)). Since L2 is closed under union, if it

were closed under complementation, it would be closed under intersection, which contradicts

the following example. Thus, L2 is not closed under complementation.

Example Consider two context-free languages L1 = {anbncm | n,m ∈ N} and L2 = {anbmcm |

n,m ∈ N}, their intersection {anbncn | n ∈ N} is not context-free, as shown in Subsection 2.2.2.

L1 is closed under complementation, and this can be proven using a space complexity

argument, which is not the focus of this thesis, so it is omitted here.

L0 is not closed under complementation, and this can be proven using a computablility

argument, which is not the focus of this thesis, so it is omitted here.

Intersection [66, 90, 93, 96] Given two languages L1 and L2, their intersection is denoted by

L1 ∩ L2 = {α | α ∈ L1, α ∈ L2}. All families Li, i = 0, 1, 3, are closed under intersection, but

L2 is not closed under intersection. In addition, L2 is closed under intersection with regular

languages.

Indeed, both families L3 and L1 are closed under union and complementation, and by De

Morgan’s law, L1 ∩ L2 =∼ ((∼ L1) ∪ (∼ L2)), so they are also closed under intersection.

From the previous example, it follows that L2 is not closed under intersection.

The situation is different if one of the languages is regular. Consider a context-free language

L1 recognized by a PDA M1 = (S 1,VI ,VZ, z0, s01 , A1, F1) and a regular language L2 recognized

by a DFA M2 = (S 2,VT , s02 , A2, F2). The PDA that recognizes the language L1 ∩ L2 can be

constructed. This is achieved by the construction M = (S ,V ′I ,VZ, z0, s0, A, F), where:

S = {〈s1, s2〉 | s1 ∈ S 1, s2 ∈ S 2},

V ′I = VI ∩ VT ,
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s0 = 〈s01 , s02〉,

A = {〈s1, s2〉 | s1 ∈ A1, s2 ∈ A2},

F = {z〈s1, s2〉a→ α〈s3, s4〉 | zs1a→ αs3 ∈ F1, s2a→ s4 ∈ F2}

∪ {z〈s1, s2〉 → α〈s3, s2〉 | zs1 → αs3 ∈ F1, s2 ∈ S 2}.

In the construction, the PDA M simulates the PDA M1 and the DFA M2 on an input word

α ∈ (VI ∪ VT )∗ in parallel.

L0 is closed under intersection, and this can be proven using a universal Turing machine,

which is not the focus of this thesis, so it is omitted here.

Set Difference [93, 96] Given two languages L1 and L2 over an alphabet Σ, their difference is

denoted by L1\L2 = {α | α ∈ L1, α < L2}, that is L1\L2 = L1∩ (∼ L2). Both familiesLi, i = 1, 3,

are closed under set difference, but neither family Li, i = 0, 2, is closed under set difference.

Since Li, i = 1, 3, are closed under intersection and complementation, and L1\L2 = L1 ∩ (∼

L2), it follows that they are closed under set difference.

Regarding Li, i = 0, 2, if they were closed under set difference, they would be closed under

complementation since ∼ L = Σ∗\L. Thus, they are not closed under set difference.

Generalized Sequential Machine Mapping [93] First, we need to define a variation of an

NFA called a generalized sequential machine.

Definition 3.1.2 ([93]) A generalized sequential machine (GSM) is a sextuple g = (VI ,VO, S ,

s0, A, F), where VI is the input alphabet, VO is the output alphabet, S is the set of states, s0 ∈ S

is the initial state, A ⊆ S is the set of final states, and F ⊆ {sia → Ps j | si, s j ∈ S , a ∈ VI , P ∈

V∗O} is the set of transitions.

Note that a GSM is essentially an NFA with an output and with no transitions of the form

si → s j.

A configuration of a GSM g = (VI ,VO, S , s0, A, F) is a word in V∗OsV∗I , where s ∈ S . An

accepting configuration of g is a word in V∗Os, where s ∈ A, and the initial configuration of g

with the input word α ∈ V∗I is s0α.

Consider two states s1, s2 ∈ S , two words α, α′ ∈ V∗I over the input alphabet, and two words

β, β′ ∈ V∗O over the output alphabet. A configuration βs1α derives another configuration β′s2α
′

in one step, denoted by βs1α ⇒ β′s2α
′, according to the transitions in F if and only if there is

a transition s1a→ Ps2 ∈ F, where α = aα′, β′ = βP.

Consider a number k ∈ N , states si j ∈ S , 0 ≤ j ≤ k, j ∈ N , input words α j ∈ V∗I ,

0 ≤ j ≤ k, j ∈ N , and output words β j ∈ V∗O, 0 ≤ j ≤ k, j ∈ N . A configuration β0si0α0
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derives another configuration βksikαk, denoted by β0si0α0 ⇒
∗ βksikαk, in k steps according to

the transitions in F if and only if β0si0α0 ⇒ β1si1α1 ⇒ ...⇒ βk−1sik−1αk−1 ⇒ βksikαk according

to the transitions in F. Note that if k = 0, this indicates a derivation of length 0, where no

transitions is applied.

With the definition of derivations, we can define the action of a GSM.

A word β ∈ V∗O is said to be output by the GSM g = (VI ,VO, S , s0, A, F) on the input word

α ∈ V∗I , denoted by β ∈ g(α), if and only if s0α ⇒
∗ βs according to the transitions in F, where

s ∈ A. With the input languages L over the alphabet VI , the language output by the GSM g is

denoted by g(L) = {β | β ∈ g(α), α ∈ L}.

Note that a GSM can be viewed as a unary operation. Given a GSM g = (VI ,VO, S , s0, A, F)

and a language L, the image of L under the GSM mapping g is g(L). All familiesLi, i = 0, 2, 3,

are closed under GSM mapping. However, L1 is not closed under GSM mapping. To prove

these, we need the following lemma.

Lemma 3.1.3 ([93]) Let T be a function defined on an alphabet Σ such that T (a, b) = 0 or

T (a, b) = 1 for all a, b ∈ Σ. The language L = {b1b2...bn | n ≥ 1, bi ∈ Σ,T (bi, bi+1) = 1 for

1 ≤ i ≤ n − 1} is regular.

Proof The idea of the proof is as follows.

According to Proposition 2.2.16, L is regular if there exists a right-linear grammar G that

generates exactly L. This right-linear grammar is G = (VN ,VT , X0, F), where:

VN = {Xi | 0 ≤ i ≤ r},

VT = {ai | 0 ≤ i ≤ r},

F = {X0 → aiXi | 1 ≤ i ≤ r}

∪ {Xi → a jX j | 1 ≤ i, j ≤ r,T (ai, a j) = 1}

∪ {Xi → λ | 1 ≤ i ≤ r}.

Next, we can prove the following proposition regarding the closure properties of Li, i =

0, 2, 3, under GSM mapping.

Proposition 3.1.4 ([93]) All families Li, i = 0, 2, 3, are closed under GSM mapping.

Proof The idea of the proof is as follows.

Let g = (VI ,VO, S , s0, A, F) be a GSM, Σ1 = {[si, a, α, s j] | sia → αs j ∈ F} be an alpha-

bet, and T be a function on Σ1 defined by T ([si, a, α, s j], [s′i , a
′, α′, s′j]) = 1 if s j = s′i , and

T ([si, a, α, s j], [s′i , a
′, α′, s′j]) = 0 otherwise.
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According to Lemma 3.1.3, the language R = {b1b2...bn | n ≥ 1, bi ∈ Σ1,T (bi, bi+1) = 1

for 1 ≤ i ≤ n − 1} is regular. Note that we want the language R to represent the derivation

of the generalized sequential machine g. Thus, the first letter of words from R should contain

the initial state s0, and the last letter should contain one of the accepting states s ∈ A. Let

R2 = {[s0, a, α, s j] ∈ Σ1},R3 = {[si, a, α, s j] ∈ Σ1 | s j ∈ A} be languages over the alphabet Σ1. If

s0 < A, we define R1 = (R2Σ
∗
1R3 ∪ (R2 ∩ R3)) ∩ R; otherwise, we define R1 = ((R2Σ

∗
1R3 ∪ (R2 ∩

R3)) ∩ R) ∪ {λ}. Note that in both cases, R1 is regular, and it represent a derivation of the GSM

g.

Next, we extract the output word from the words representing derivations. Let h1 be the ho-

momorphism defined by h1([si, a, α, s j]) = a for [si, a, α, s j] ∈ Σ1, and h2 be the homomorphism

defined by h2([si, a, α, s j]) = α for [si, a, α, s j] ∈ Σ1. We have that g(L) = h2(h−1
1 (L) ∩ R1).

Since the families Li, i = 0, 2, 3, are closed under intersection with regular languages,

inverse homomorphism and arbitrary homomorphism, it follows that they are closed under

GSM mapping.

According to Corollary 2.2.46, a context-sensitive language L′ can be constructed from

any recursively enumerable language L over an alphabet Σ, and g(L′) = L. Consider a GSM

g = (VI ,Σ, S , s0, A, F), where:

VI = Σ ∪ {a, b},

S = {s0, s1},

A = {s1},

F = {s0a→ s0, s0b→ s1}

∪ {s1c→ cs1 | c ∈ Σ}.

We have that g(L′) = L, and it follows that L1 is not closed under GSM mapping.

λ-free Generalized Sequential Machine Mapping [93] A GSM is said to be λ-free if and

only if its transitions are F ⊆ {sia → Ps j | si, s j ∈ S , a ∈ VI , P ∈ V+
O}. Given a λ-free GSM

g = (VI ,VO, S , s0, A, F) and a language L, the image of L under the λ-free GSM g is g(L). All

families Li, 0 ≤ i ≤ 3, are closed under λ-free GSM mapping.

A similar proof to Proposition 3.1.4, with h2 as a λ−free homomorphism, can be used here.

Since the families Li, 0 ≤ i ≤ 3, are closed under intersection with regular languages, inverse

homomorphism and λ−free homomorphism, they are closed under λ-free GSM mapping.

Left Quotient [36, 54, 93] Given two languages L1 and L2, the left quotient of L1 by L2 is

denoted by L−1l
2 L1 = {β | αβ ∈ L1, α ∈ L2}. Both families L0 and L3 are closed under left
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quotient, L2 is closed under left quotient by regular languages, and L1 is closed under left

quotient by finite languages.

For the regular case, consider a DFA M = (S ,Σ, s0, A, F) that recognizes the language

L, two states s1, s2 ∈ S , and an arbitrary language L2 over the alphabet Σ. Let the language

L(s1,s2)
M = {α | s1α⇒

∗ s2, α ∈ Σ∗} be the set of all words that can be read deriving any derivations

from s1 to s2 L, and h be the homomorphism defined by h(#) = λ and h(a) = a for a ∈ Σ.

An NFA M′ can be constructed such that h(L(M′) ∩ #Σ∗) = L−1l
2 L1. This is achieved by the

construction M′ = (S ,Σ∪ {#}, s0, A, F ∪ {s0#→ s′ | L(s0,s′)
M ∩ L2 , ∅}). Since L3 is closed under

arbitrary homomorphism and intersection, the left quotient of regular languages by an arbitrary

language is regular.

Consider now the case where L1 = L is a regular (context-free, recursively enumerable)

language over the alphabet Σ, and L2 = R over the alphabet Σ is regular. Let c < Σ be a special

letter, h be a homomorphism defined by h(c) = λ, h(a) = a for a ∈ Σ, and g be a GSM defined

by g = (VI ,Σ, S , s0, A, F), where:

VI = Σ ∪ {c},

S = {s0, s1},

A = {s0},

F = {s0c→ s1}

∪ {s0a→ s0 | a ∈ Σ}

∪ {s1a→ as1 | a ∈ Σ}.

We have that R−1l L = g(h−1(L) ∩ RcΣ∗). Since Li, i = 0, 2, 3, are closed under inverse homo-

morphism, GSM mapping and intersection with regular languages, it follows that they are also

closed under left quotient by regular languages.

Consider two context-free languages L1 and L2, where L1 = a{b ja j | j ∈ N+}∗, and L2 =

{aib2i | i ∈ N+}∗. We have that L−1l
2 L1 ∩ a+ = {a2n

| n ∈ N+} which is not context-free by

Lemma 2.2.34. Since L2 is closed under intersection with regular languages, it follows that it

is not closed under left quotient.

Regarding the context-sensitive case, according to Corollary 2.2.46, a context-sensitive

language L′ can be constructed from any recursively enumerable language L, and {a∗b}−1l L′ =

L. Thus, L1 is not closed under left quotient by regular languages.

The situation is different for left quotient of context-sensitive languages by finite lan-

guages. Consider a context-sensitive language L generated by a context-sensitive grammar

G = (VN ,VT , X0, F) and a word α = a1a2...an ∈ V∗T . A recursively enumerable grammar G′ that

generates {α}−1l L can be constructed. This is achieved by the construction G′ = (V ′N ,VT ,Y0, F′),
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where:

V ′N = VN ∪ {Y0,Y1,Y2}

∪ {Aa | a ∈ VT },

F′ = F ∪ {Y0 → Y1a1a2...anY2X0,Y1Y2 → λ}

∪ {Y2a→ AaY2 | a ∈ VT }

∪ {bAa → Aab | a, b ∈ VT }

∪ {Y1Aaa→ Y1λ | a ∈ VT }.

According to Proposition 2.2.45, a constant p = 2 ∗ |α| + 3 exists such that WS G′(β) ≤ p ∗ |β|

for all nonempty words β ∈ L(G′). Thus, if α is the longest word in L, L1 is closed under left

quotient by finite languages L because the work space is bounded by 2 ∗ |α| + 3.

Left Derivative [93] Given two languages L1 and L2, if L2 only contains a single word α, the

left quotient of L1 by L2 is called the left derivative of L1 with respect to α, and it is denoted by

∂αL1. From the proofs of the closure properties under left quotient, it follows that all families

Li, 0 ≤ i ≤ 3, are closed under left derivative.

Right Quotient [36, 54, 93] Given two languages L1 and L2, the right quotient of L1 by L2

is defined by L1L−1
2 = {α | αβ ∈ L1, β ∈ L2}. We have similar results and proofs as for left

quotient. Both families L0 and L3 are closed under right quotient, L2 is closed under right

quotient by regular languages, and L1 is closed under right quotient by finite languages.

Right Derivative [93] Given two languages L1 and L2, if L2 only contains a single word α,

the right quotient of L1 by L2 is called the right derivative of L1 with respect to α, and it is

denoted by ∂r
αL2. From the proofs of the closure properties under right quotient, all families

Li, 0 ≤ i ≤ 3, are closed under right derivative.

Prefix/Suffix/Infix [93] All words α over the alphabet Σ have a decomposition α = xyz,

where x, y, z ∈ Σ∗, and the subwords x, y, z of the word α are called the prefix, infix and suffix

of the word α respectively. The set of prefixes (resp. infixes, suffixes) of a word α is denoted

by pref(α) (resp. inf(α), suff(α)). If the empty word λ and the word α itself are removed from

the set of prefixes (resp. infixes, suffixes) of the word α, then it is called the set of proper prefix

(resp. infix, suffix) of the word α, denoted by Pref(α) (resp. Inf(α),Suff(α)). The prefix (resp.

suffix, infix) operation on words can be extended to languages by pref(L) = {α | αβ ∈ L, α, β ∈

Σ∗} (resp. suff(L) = {β | αβ ∈ L, α, β ∈ Σ∗}, inf(L) = {β | α1βα2 ∈ L, α1, α2, β ∈ Σ∗}). The
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proper prefix (infix, suffix) operation on languages can be defined in a similar manner. All

families Li, i = 0, 2, 3, are closed under (proper) prefix, (proper) suffix and (proper) infix, but

L1 is not.

Indeed, let L be a language over the alphabet Σ. We have that pref(L) = L(Σ∗)−1,Pref(L) =

(L(Σ+)−1)\{λ}, suff(L) = (Σ∗)−1l L = mi
(
pref (mi (L))

)
, Suff(L) = ((Σ+)−1l L)\{λ}, inf(L) =

pref(suff(L)), Inf(L) = Pref(L)∪Suff(L). Since all families Li, i = 0, 2, 3, are closed under left

quotient by regular languages, mirror image, right quotient by regular languages, union and

difference with regular languages, it follows that they are closed under (proper) prefix, (proper)

suffix and (proper) infix.

Next, we show the closure properties of L1 under prefix, suffix and infix. According to

Corollary 2.2.46, a specific context-sensitive language L1 can be constructed from any recur-

sively enumerable language L over the alphabet Σ, and ∂b(suff(L1) ∩ bΣ∗) = L. According

to Corollary 2.2.47, a specific context-sensitive language L2 can be constructed from any re-

cursively enumerable language L over the alphabet Σ, and ∂r
b(pref(L2) ∩ Σ∗b) = L. Note

that L3 = L1b is context-sensitive because L1 is closed under concatenation. Moreover,

∂b(∂r
b(inf(L3) ∩ bΣ∗b)) = L. Thus, L1 is not closed under prefix, suffix and infix.

Next, we show the closure properties of L1 under proper prefix, proper suffix and proper

infix. Let c < Σ be a letter, and h be a λ−free homomorphism defined by h(b) = bc and

h(d) = d for d ∈ Σ ∪ {a}. The three languages L′1 = h(L1), L′2 = h(L2), L′3 = L′1c that are

context-sensitive because L1 is closed under concatenation and λ−free homomorphism. Since

∂c(Suff(L′1) ∩ cΣ∗) = ∂r
c(Pref(L′2) ∩ Σ∗c) = ∂c(∂r

c(Inf(L′3) ∩ cΣ∗c)) = L, it follows that L1 is not

closed under proper prefix, proper suffix and proper infix.

3.2 Insertion and Deletion Operations

In this section, word and language operations related to inserting words into other words and

deleting words from other words are defined, and the closure properties of the Chomsky fami-

lies of languages under these operations are summarized.

Sequential Insertion [54] Given two words α, β over an alphabet Σ, the sequential insertion

of β into α is defined by α ← β = {α1βα2 | α = α1α2}, and the sequential insertion of a

language L2 into another language L1 is defined by L1 ← L2 =
⋃

α∈L1,β∈L2
(α← β). All families

Li, 0 ≤ i ≤ 3, are closed under sequential insertion.

Indeed, let L1, L2 be two languages over the alphabet Σ, # < Σ be a letter, a homomorphism

h defined by h(#) = λ, h(a) = a for a ∈ Σ, and a λ-free substitution σ defined by σ(a) = a for

a ∈ Σ, σ(#) = L2\{λ}. We have the following cases:



www.manaraa.com

50 Chapter 3. Word Operations

• if λ < L1 ∪ L2, L1 ← L2 = σ(h−1(L1) ∩ Σ∗#Σ∗);

• if λ ∈ L2 − L1, L1 ← L2 = σ(h−1(L1) ∩ Σ∗#Σ∗) ∪ L1;

• if λ ∈ L1 − L2, L1 ← L2 = σ(h−1(L1) ∩ Σ∗#Σ∗) ∪ L2;

• if λ ∈ L1 ∩ L2, L1 ← L2 = σ(h−1(L1) ∩ Σ∗#Σ∗) ∪ L1 ∪ L2.

Since all families Li, 0 ≤ i ≤ 3, are closed under inverse homomorphism, λ-free substitu-

tion, intersection with regular languages, and union, it follows that they are also closed under

sequential insertion.

Parallel Insertion [54] Let Σ be an alphabet, α ∈ Σ∗ be a word, and L ⊆ Σ∗ be a lan-

guage. The parallel insertion of L into α is defined by α ⇐ L = {β0a1β1a2...akβk | α =

a1a2...ak, β0, β1, ..., βk ∈ L}, and the parallel insertion of a language L2 into another language L1

is defined by L1 ⇐ L2 =
⋃

α∈L1
(α ⇐ L2). All families Li, 0 ≤ i ≤ 3, are closed under parallel

insertion.

Indeed, let L1, L2 be two languages over the alphabet Σ, and σ be a λ−free substitution

defined by σ(a) = aL2 for a ∈ Σ. We have that L1 ⇐ L2 = L2σ(L1). Since all families Li,

0 ≤ i ≤ 3, are closed under concatenation and λ-free substitution, it follows that they are also

closed under parallel insertion.

Sequential Deletion [55] Given two words α, β over the alphabet Σ, the sequential deletion

of β from α is defined by α→ β = {α1α2 | α = α1βα2, α1, α2 ∈ Σ∗}, and the sequential deletion

of a language L2 from another language L1 is defined by L1 → L2 =
⋃

α∈L1,β∈L2
(α → β). Both

families Li, i = 0, 3, are closed under sequential deletion, but neither family Li, i = 1, 2, is

closed under sequential deletion.

Consider first the case L1 → L2, where L1 is a regular language over the alphabet Σ, and

L2 is an arbitrary language over the alphabet Σ. Consider a DFA M1 = (S ,Σ, s0, A, F) that

generates the language L1 and two states s1, s2 ∈ S . Let the language L(s1,s2)
M = {α | s1α ⇒

∗

s2, α ∈ Σ∗} be the set of all words that can be read deriving any derivations from s1 to s2, and h

be a homomorphism defined by h(#) = λ, h(a) = a for a ∈ Σ. An NFA M can be constructed

such that L1 → L2 = h(L(M) ∩ Σ∗#Σ∗). This is achieved by the construction M = (S ,Σ ∪

{#}, s0, A, F ∪ {s# → s′ | s, s′ ∈ S , L(s,s′)
M1
∩ L2 , ∅}). We note that M recognizes the language

L1 → L2 with deleted subwords replaced by #. Since L3 is closed under intersection and

arbitrary homomorphism, the sequential deletion of arbitrary languages from regular languages

is regular.
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Consider now the case where L1 = L is a context-free language over the alphabet Σ, and

L2 = R is recognized by the DFA M = (S ,Σ, s0, A, F). A GSM g such that L→ R = g(L)∪ {λ |

L ∩ R , ∅} can be constructed. This is achieved by the construction g = (Σ,Σ, S ′, s′0, A
′, F′),

where:

S ′ = S ∪ {s′0, s f },

A′ = {s f },

F′ = F ∪ {s′0a→ as′0 | a ∈ Σ}

∪ {s′0a→ s | s0a→ s ∈ F}

∪ {sa→ s f | sa→ s′ ∈ F, s′ ∈ A}

∪ {s f a→ as f | a ∈ Σ}

∪ {s′0a→ s f | s0a→ s ∈ F, s ∈ A}

∪ {s′0a→ as f | a ∈ Σ, λ ∈ R}.

Thus, any family of languages closed under GSM mapping is also closed under sequential

deletion with regular languages. Since L2 is closed under GSM mapping, it follows that it is

also closed under sequential deletion with regular languages.

Consider two context-free languages L1 = #a{biai | i ∈ N+}∗, L2 = #{aib2i
| i ∈ N+}∗, we

have that (L1 → L2) ∩ a+ = {a2n
| n ∈ N+} which is not context-free by Lemma 2.2.34. Since

L2 is closed under intersection with regular languages, it follows that it is not closed under

sequential deletion.

According to Proposition 2.2.46, a specific context-sensitive language L′ can be constructed

from any recursively enumerable language L, and L′ → a∗b = L. Thus, L1 is not closed under

sequential deletion.

Dipolar Deletion [55] Given two words α, β over an alphabet Σ, the dipolar deletion of β

from α is defined by α ↔ β = {α2 | α = α1α2α3, β = α1α3, α1, α2, α3 ∈ Σ∗}, and the dipolar

deletion of a language L2 from another language L1 is defined by L1 ↔ L2 =
⋃

α∈L1,β∈L2
(α ↔

β). Using proofs similar to the proofs for sequential deletion, we have that both families Li,

i = 0, 3, are closed under dipolar deletion, but neither family Li, i = 1, 2, is closed under

dipolar deletion.

Shuffle [49, 54] Given two words α, β over an alphabet Σ, the shuffle of β into α is defined

by α
∐
β = {α1β1α2β2...αkβk | α = α1α2...αk, β = β1β2...βk, k ∈ N+;αi, βi ∈ Σ∗, 1 ≤ i ≤

k}, and the shuffle of a language L2 into another language L1 can be defined by L1
∐

L2 =
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⋃
α∈L1,β∈L2

(α
∐
β). All families Li, i = 0, 1, 3, are closed under shuffle, but L2 is not closed

under shuffle.

For the regular case, let L1 be a regular language recognized by the DFA M1 = (S 1,Σ, s01 ,

A1, F1) and L2 be a regular language recognized by the DFA M2 = (S 2,Σ, s02 , A2, F2). An

NFA that recognizes the language L(M1)
∐

L(M2) can be constructed. This is achieved by the

construction M = (S ,Σ, 〈s01 , s02〉, A, F), where:

S = {〈s1, s2〉 | s1 ∈ S 1, s2 ∈ S 2},

A = {〈s1, s2〉 | s1 ∈ A1, s2 ∈ A2},

F = {〈s1, s2〉a→ 〈s3, s2〉 | s1a→ s3 ∈ F1, s2 ∈ S 2}

∪ {〈s1, s2〉a→ 〈s1, s4〉 | s2a→ s4 ∈ F2, s1 ∈ S 1}.

Note that a PDA can be constructed in a similar way for the shuffle of regular languages into

context-free languages and for the shuffle of context-free languages into regular languages.

Thus, L3 and L2 are closed under shuffle into regular languages, and the shuffle of regular

languages into context-free languages is context-free.

Consider two context-free languages L1 = {anbn | n ∈ N+}, L2 = {cmdm | m ∈ N+},

we have that (L1
∐

L2) ∩ a+c+b+d+ = {ancmbndm | m, n ∈ N+} which is not context-free by

Lemma 2.2.34. Since L2 is closed under intersection with regular languages, it follows that it

is not closed under shuffle.

Let L1 be a λ-free context-sensitive language generated by the context-sensitive grammar

G1 = (VN1 ,VT1 , X01 , F1), and L2 be a λ-free context-sensitive language generated by the context-

sensitive grammar G2 = (VN2 ,VT2 , X02 , F2). We assume that all the production rules in F1, F2

containing terminal letters are of the form X → a due to Lemma 3.0.3. A length-increasing

grammar G that generates exactly the language L1
∐

L2 can be constructed. This is achieved

by the construction G = (VN ,VT , X0, F), where:

VN = VN1 ∪ VN2 ∪ {X0} ∪ {Xa | a ∈ VT2},

VT = VT1 ∪ VT2 ,

F = F1 ∪ {X → Xa | X → a ∈ F2, a ∈ VT2}

∪ {X0 → X01 X02}

∪ {bXa → Xab | a ∈ VT2 , b ∈ VT1}

∪ {Xa → a | a ∈ VT2}.

The other cases regarding the empty word λ are as following:

• if λ ∈ L2\L1, L1
∐

L2 = (L1
∐

(L2\{λ})) ∪ L1;
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• if λ ∈ L1\L2, L1
∐

L2 = ((L1\{λ})
∐

L2) ∪ L2;

• if λ ∈ L2 ∩ L1, L1
∐

L2 = ((L1\{λ})
∐

(L2\{λ})) ∪ L1 ∪ L2.

SinceL1 is closed under union and difference with regular languages, it is also closed under

shuffle.

3.3 Invertible Binary Operations

Decision problems regarding equations involving formal languages and operations are an im-

portant theoretical aspect of formal language study. For example, given a language L over an

alphabet Σ and two homomorphisms h, g, mapping words over Σ, the decision problems related

to whether or not g(L) = h(L) were studied in [2, 19, 20]. In this section, equations of the form

L � Y = R or X � L = R are considered, where � is a binary word operation extended to lan-

guages by L�Y =
⋃

α∈L,β∈Y(α�β), L,R are known languages, and X,Y are unknown languages.

The solutions to these equations and decision problems about the existence of solutions and

singleton solutions were studied in [56], and we briefly describe them here.

Consider an alphabet Σ and a binary word operation �. We can define the right-inverse of

the word operation �.

Definition 3.3.1 ([56]) A binary word operation � is called the right-inverse of � if and only if

for all α, β, γ ∈ Σ∗, we have that γ ∈ (α�β) if and only if β ∈ (α � γ).

Example Sequential insertion and reversed dipolar deletion1 are right-inverses of each other

because γ ∈ (α← β) if and only if β ∈ (γ ↔ α) for all α, β, γ ∈ Σ∗.

We can define the left-inverse of � in a similar way.

Definition 3.3.2 ([56]) A binary word operation � is called the left-inverse of � if and only if

for all α, β, γ ∈ Σ∗, we have that γ ∈ (α�β) if and only if α ∈ (γ � β).

Example Concatenation and right quotient are the left-inverses of each other because for all

α, β, γ ∈ Σ∗, we have that γ ∈ (αβ) if and only if α ∈ γβ−1.

Next, we use left-inverse and right-inverse to solve equations of the form L � Y = R or

X � L = R. Consider an alphabet Σ, two known languages L,R over the alphabet Σ, and a

binary operation �.

Consider first the case where right operand in the equation is unknown.
1A binary word operation �r is called the reversed operation of � if and only if for all α, β ∈ Σ∗, we have that

α�rβ = β�α.
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Proposition 3.3.3 ([56]) Consider an equation L�Y = R. If there is a solution to this equation,

the language Y ′ = (L�Rc)c is also a solution to the equation, where � is the right-inverse of �,

and all the solutions to this equation are subsets of Y ′.

Proof We want to prove first that the Y ′ is a solution, by double inclusion.

On the one hand, we can prove by contradiction that L � Y ′ ⊆ R. Assume that L � Y ′ * R

means that there exists a word γ ∈ Σ∗ in L�Y ′ but not in R. Then, there exist words α ∈ L, β ∈ Y ′

such that γ ∈ (α � β), we have that β ∈ (α�γ) ⊆ (L�Rc), which contradicts the fact that β ∈ Y ′.

Thus, we have that L � Y ′ ⊆ R.

On the other hand, we can prove by contradiction that for all languages Y over the alphabet

Σ such that L � Y = R, we have that Y ⊆ Y ′. Assume that there exists a language Y such that

L � Y = R but Y * Y ′. This implies that there exists a word β ∈ Σ∗ in Y but not in Y ′, which

means β is in L�Rc. Then, there exist words α ∈ L, γ ∈ Rc such that β ∈ α�γ, and it follows

that γ ∈ α�β ⊆ L�Y = R, which contradicts the fact that γ ∈ Rc. Thus, we have that L�Y ′ ⊆ R,

and it follows that Y ′ is the maximal solution.

In a similar approach, we arrive at the following proposition for cases where the left operand

in the equation is unknown.

Proposition 3.3.4 ([56]) Consider an equation X�L = R. If there is a solution to the equation,

the language X′ = (Rc�L)c is a solution to the equation, where � is the left-inverse of �, and

all the solutions to the equation are a subset of X′.

Note that X′ is the maximal solution to the equation.

We can ask the following two decision questions regarding equations of the form L�Y = R

or X � L = R.

1. Is there a solution to the equation?

2. Is there a singleton solution to the equation?

We can usually determine whether problem 1 is decidable, regarding equations of the

form L � Y = R or X � L = R, by a general method with the help of Proposition 3.3.3 and

Proposition3.3.4, as follows.

Example Consider an alphabet Σ, two regular languages L,R over the alphabet Σ, and a binary

operation � whose right-inverse is �. Also, assume that L3 is closed under � and �. The

problem “Is there a solution to the equation L � Y = R?” is decidable because of Algorithm 3,

and the maximal solution can be effectively constructed.
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Input: Two regular languages L,R, two binary operations �,� under which L3 is closed,

and which are right-inverses of each other

Output: “Yes” if there is a solution to the equation L � Y = R and “no” otherwise Let Y ′

be the regular language (L�Rc)c;

Let R′ be the regular language L � Y ′;

if R′ = R then
Return “Yes”;

else
Return “No”;

end
Algorithm 3: An algorithm that decides the problem “Is there a solution to the equation

L � Y = R?”

When we try to decide the existence of a singleton solution to equations of the form of

L � {w} = R or {w} � L = R, we need to analyze the properties of the languages L,R, {w}.

Example Consider an alphabet Σ, two regular languages L,R over the alphabet Σ, and an

equation L{w} = R. If there is a singleton solution {w}, the word w should not be longer than

the shortest word in R due to the nature of concatenation, so we have a finite set of words to

check. Thus, the existence of a singleton solution to the equation is decidable.

When we study a new binary word operation �, this chapter provides us a direction of

research. We can ask the previous two decision questions regarding equations of the form

L � Y = R or X � L = R.

3.4 Abstract Families of Languages

In Section 2.2, the families of languages were defined based on restrictions to the production

rules of their grammars. We can also define a family of languages based on their closure

properties under some operations.

Definition 3.4.1 ([37]) A family of languages L is called an abstract family of languages

(AFL) if and only if

• there is a language containing a non-empty word in the family L, and

• the familyL is closed under union, concatenation, λ−free concatenation closure, inverse

homomorphism, λ−free homomorphism, and intersection with regular languages.
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Note that all of the families Li, where 0 ≤ i ≤ 3, are AFLs. If λ−free homomorphism is

replaced by arbitrary homomorphism, we have a more restricted definition.

Definition 3.4.2 ([37]) A family of languages L is called a full abstract family of languages if

and only if

• there is a language containing a non-empty word in the family L, and

• the family L is closed under union, concatenation, λ−free concatenation closure, inter-

section with regular languages, arbitrary homomorphism, and inverse homomorphism.

Note that the family of context-sensitive languages is not a full AFL.

Note that we can prove that a family of languages, which is known to be closed under a set

O of operations, is closed under an operation � by representing � in terms of operations from

O, as shown in Corollary 3.4.3 of Proposition 3.1.1.

Corollary 3.4.3 ([93]) If a family L of languages is closed under λ−free regular substitution,

restricted homomorphism, union with regular languages, and intersection with regular lan-

guages, then L is closed under inverse homomorphism.

We are also interested in finding the smallest and most restricted set of operations to repre-

sent a new operation.

Example If we replace “union with regular languages” with “union”, Corollary 3.4.3 also

holds . However, the resulting set of operations is sufficient but not necessary.

Note that we can prove that a family of languages, which includes a language containing a

non-empty word and is closed under some other set O of operations, is an AFL by representing

the required operations in the definition of AFLs in terms of the operations from O, as shown

in the proof the following proposition.

Proposition 3.4.4 ([93]) If a family L of languages includes a language containing a non-

empty word and is closed under union, λ−free concatenation closure, λ−free regular substitu-

tion, intersection with regular languages, and restricted homomorphism, then L is an AFL.

Proof If L is λ−free, we have that L is closed under inverse homomorphism by Proposi-

tion 3.1.1. Thus, L is an AFL in this case.

If L is not λ−free, for all languages L ∈ L over an alphabet Σ and any homomorphism,

we have that h−1(L′) ∈ L where L′ = L ∩ Σ+. Since L = L′ ∪ {λ}, it follows that h−1(L) =

h−1(L′)∪h−1(λ), so we only need to prove that h−1(λ) ∈ L becauseL is closed under intersection
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with regular languages. Note that {λ} ∈ L because there exists a language L1 ∈ L such that

λ ∈ L1, {λ} = L1∩{λ}, and L is closed under intersection with regular languages. Since there is

a language L2 ∈ L containing a non-empty word α, we have that {α} = L2 ∩ {α} ∈ L. Since {α}

is λ−free, there exists a inverse homomorphism that maps {α} to {a ∈ Σ} ∈ L. Thus, we have

that there exists a λ−free regular substitution that maps {a} to L3 ⊆ Σ∗, and L3 ∈ L3. Thus, with

any inverse homomorphism, there exists a language L3 ⊆ Σ∗ such that h−1({λ}) = L3. Thus, L

is closed under inverse homomorphism.

Since L is closed under union, λ−free homomorphism, inverse homomorphism, and inter-

section with regular languages, it is closed under concatenation [93]. It follows that L is an

AFL in this case.

Note that since Li, 0 ≤ i ≤ 3, are AFLs, and Li, for i = 0, 2, 3, are full AFLs, we can prove

that Li, for 0 ≤ i ≤ 3, are closed under an operation if the corresponding (full) AFL is closed

under that operation.

Example According to Corollary 3.4.5 of Proposition 3.1.4, we have that L3 is closed under

GSM mapping.

Corollary 3.4.5 ([93]) Every full AFL is closed under GSM mapping.

When we study a new operation �, this chapter provides us a method to prove that some

Chomsky families of languages are closed under � by proving a (full) AFL is closed under �.

3.5 State Complexity

In this section, we give a brief introduction to state complexity and some state complexity

results about operations under which L3 is closed. State complexity is a complexity measure

for L3, and it is based on the DFA model [106].

The size of a DFA M = (S ,VT , s0, A, F) is determined by either the number of states |S |,

or the number of transitions |F|. An upper bound of the number of transitions of any DFA

M = (S ,VT , s0, A, F) is given by |VT | ∗ |S ′|. It follows that both ways used to determine the size

of a DFA are related, and in this section we are interested in the number of states.

Definition 3.5.1 ([34]) The state complexity of a regular language L, denoted by sc(L), is de-

fined as the number of states in the minimal complete DFA M that recognizes L.

Example The state complexity of the regular language L = a{a, b}∗b over the alphabet Σ =

{a, b} is 4, because the DFA in Figure 3.1 is the minimal complete DFA that recognizes L.
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s0start d s1 s2
b

a

a

b

a

b
a

b

Figure 3.1: The minimal complete DFA with 4 states that recognizes a({a} ∪ {b})∗b

Definition 3.5.2 ([106]) A regular language L is called an m−state DFA language if and only

if L can be recognized by a DFA with m states.

The definition of state complexity can be extended to operations under which L3 is closed.

Definition 3.5.3 ([107]) Let � be an operation under whichL3 is closed. If � takes k operands,

let Li be an mi−state DFA language for 1 ≤ i ≤ k. The state complexity of an operation � is

defined as the number of states, in terms of mi, 1 ≤ i ≤ k, that is sufficient and necessary (in

the worst case) for a minimal complete DFA to recognize the regular language generated by

applying � on regular languages Li, 1 ≤ i ≤ k.

Example The state complexity of concatenation between an m−state DFA language L1 with

an n−state DFA language L2 over an arbitrary alphabet Σ is m · 2n − 2n−1, where m, n > 1 [107].

Next, we show that a DFA with m · 2n − 2n−1 states is sufficient and necessary to recognize

the language L1L2.

Let L1 be an m−state DFA language recognized by a DFA M1 = (S 1,Σ, s01 , A1, F1) with m

states, and L2 be an n−state DFA language recognized by a DFA M2 = (S 2,Σ, s02 , A2, F2) with

n states. A DFA M = (S ,Σ, s0, A, F) that recognizes the language L1L2 can be constructed,

where:

S = {〈si,T 〉 | si ∈ S 1,T ∈ 2S 2} − {〈si,T 〉 | si ∈ A1,T ∈ 2S 2−{s02 }},

s0 =

〈s01 , ∅〉 if s01 ∈ A1,

〈s01 , {s01}〉 otherwise,

A = {〈si,T 〉 | 〈si,T 〉 ∈ S ,T ∩ A1 , ∅},

F = {〈si,T 〉a→ 〈s j,T ′〉 | sia→ s j ∈ F1, s j ∈ A1,T ′ = {s02} ∪
⋃
sk∈T

{sl | ska→ sl ∈ F2}}

∪ {〈si,T 〉a→ 〈s j,T ′ >| sia→ s j ∈ F1, s j < A1,T ′ =
⋃
sk∈T

{sl | ska→ sl ∈ F2}}.
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The set T tracks all the possible current states for M2. Every time that M1 reaches an final

state, the initial state of M2 is added to T . Note that this DFA contains (m − |A1|) · 2n − 2n−1

states which is maximized when |A1| = 1.

< p0, ∅ >start < p1, {q0} >

< p0, {q0} >

< p0, {q1} >

< p0, {q0, q1} >< p1, {q0, q1} >

b, c

a

a

b

c

b, c

a

c

b
a

c

b

a

c
a, b

Figure 3.2: The minimal DFA that recognizes the concatenation of two 2-state DFA languages

The bound m · 2n − 2n−1 is also necessary because it is reached when L1, L2 are recognized

by minimal complete DFAs M1 = (S 1,Σ, s01 , A1, F1) and M2 = (S 2,Σ, s02 , A2, F2), where:

S 1 ={pi | 0 ≤ i ≤ m − 1},

A1 ={pm−1},

F1 ={pia→ p j | j = (i + 1) mod m, pi, p j ∈ S 1}

∪{pib→ p0 | pi ∈ S 1}

∪{pic→ pi | pi ∈ S 1},

S 2 ={qi | 0 ≤ i ≤ n − 1},

A2 ={qn−1},

F2 ={qib→ q j | j = (i + 1) mod n, qi, q j ∈ S 2}

∪{qic→ q1 | qi ∈ S 2}

∪{qia→ qi | qi ∈ S 2}.

If m = n = 2, the DFA constructed by this procedure is minimal, and it is shown in
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Figure 3.2.

Note that we specified that m, n > 1. If n = 1, a different bound would be calculated; the

state complexity of concatenation of an m−state DFA language with a 1-state DFA language is

m [107]. Also, we specified that the bound above was reached when an arbitrary alphabet was

used. If we have a single-letter alphabet Σ, the state complexity of concatenation of an m−state

DFA language with an n-state DFA language is m · n if m and n are relatively prime [107].

Thus, when we consider the state complexity of operations, we need to consider these special

cases.

The state complexities of union, intersection, mirror image, concatenation, concatenation

closure, left quotient with an arbitrary language L and right quotient with an arbitrary language

L, are studied in [8, 34, 89, 106, 107], and are summarized in Table 3.1.

Operation State Complexity Worst Case

Lm ∪ Ln mn Lm = {α ∈ {a, b}∗ | na(α) , 0 mod m}

Ln = {α ∈ {a, b}∗ | nb(α) , 0 mod n}

Lm ∩ Ln mn Lm = {α ∈ {a, b}∗ | na(α) = 0 mod m}

Ln = {α ∈ {a, b}∗ | nb(α) = 0 mod n}

∼ Lm m All cases

LmLn (2m − 1)2n−1 Lm, Ln shown in Figure 3.2

L∗m 2m−1 + 2m−2 Lm = {α ∈ {a, b}∗ | Na(α) = 2n + 1, n ∈ N}

L−1l Lm 2m − 1 L = {a, b}∗, Lm = (b∗a{a, b}m−1)∗b∗a{a, b}m−2

LmL−1 m L = {λ}

Table 3.1: State complexities of some operations under whichL3 is closed, where the operands

are an m−state DFA language Lm and an n−state DFA language Ln over an arbitrary alphabet

Σ, where m, n > 1.

As shown in Proposition 3.1.1, operations can be represented as a composition of other

basic operations.

Example A new binary operation � is defined by Lm � Ln = (Lm ∪ Ln)∗, and L3 is closed under

� because it is closed under union and concatenation closure. An upper bound for the state

complexity can be calculated using function composition, where Lm, Ln are over an arbitrary

alphabet and m, n > 1, such as sc(Lm � Ln) = 2m·n−1 + 2mṅ−2. However, this is different from the

exact state complexity 2m+n−1 − 2m−1 − 2n−1 + 1 [34].

It has also been proven that there does not exist an algorithm to calculate the state complex-

ity of an operation which is a composition of some basic regularity-preserving operations [94].
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Biologically-Inspired Operations

The emergence of the field of DNA computing [1] has motivated the definition of many lan-

guage operations that are biologically inspired. Biological processes on DNA can be viewed as

functions on the information stored on DNA, so studying such operations can ultimately lead

to biological computers which are as computationally powerful as electronic computers and

can naturally achieve high degrees of parallelism.

In Section 4.1, we will briefly introduce DNA and some DNA related processes. In Sec-

tion 4.2, biologically inspired word operations and their properties are surveyed.

4.1 Biological Background

Nucleotides are the basic building blocks of deoxyribonucleic acid (DNA). Each nucleotide

contains a five-carbon sugar with its carbon atoms labeled by 1′ to 5′, a nucleobase (adenine

(A), cytosine (C), guanine (G) or thymine (T )) connected to the carbon labeled by 1′, a hy-

droxyl group connected to the carbon labeled by 3′, and a phosphate group connected to the

carbon labeled by 5′. For example, a nucleotide with adenine as its nucleobase is illustrated in

Figure 4.1, where the five-carbon sugar is at the center, the adenine nucleobase is at the upper

right, the phosphate group is at the left, and the hydroxyl group is at the bottom. The hydroxyl

group of a nucleotide can form a covalent bond with the phosphate group of another nucleotide

with the help of enzymes. If we have a single-stranded DNA molecule of length m ∈ N+

and a single-stranded DNA molecule of length n ∈ N+, they can form a single-stranded DNA

molecule of length m + n with one free phosphate group and one free hydroxyl group by form-

ing a covalent bond. This chain of alternating sugar and phosphate groups forms the backbone

of a single-stranded DNA molecule. A short DNA molecule is called an oligonucleotide.

Single-stranded DNA molecules are considered to be directional, from the free phosphate

61
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Figure 4.1: A nucleotide consists of a five-carbon sugar (center) with its carbon labeled from

1′ to 5′ clockwise, an adenine nucleobase (upper right) connected to the 1′ carbon, a phosphate

group (left) connected to the 5′ carbon, and a hydroxyl group (bottom) connected to the 3′

carbon [105]

group on its 5′ end to the nucleotide with the free hydroxyl group on its 3′ end. If we read

the nucleobases of a single-stranded DNA molecule in this direction, a single-stranded DNA

molecule can be translated into a word over the alphabet Σ = {A,C,G,T }. In addition, by

convention, we write the strand in the 5′ to 3′ orientation. The nucleobase C is the Watson-

Crick complement the nucleobase G, and vice versa; also, the nucleobase A is the Waston-

Crick complement of the nucleobase T , and vice versa [103]. For a nucleobase a ∈ Σ, its

Watson-Crick complement is denoted by ā; for a word α ∈ Σ∗, its Waston-Crick complement

is denoted by λ̄ = λ, ᾱ = a1a2...ak, where α = a′1a′2...a
′
k, ai = ā′i for 1 ≤ i ≤ k. We can consider

the following definition.

Definition 4.1.1 ([57]) Let Σ = {A,C,G,T } be an alphabet. The mapping θ : Σ∗ → Σ∗ defined

by θ(λ) = λ, θ(A) = T, θ(T ) = A, θ(C) = G, θ(G) = C, θ(αβ) = θ(β)θ(α), where α, β ∈ Σ+, is an

involution.

Note that θ2 is the identity, where θ(θ(α)) = α, α ∈ Σ∗. In addition, θ(α) = mi(ᾱ), α ∈ Σ∗.

With this definition, we consider double-stranded DNA molecules.

Let α, β ∈ Σ∗ be two words representing single-stranded DNA molecules. The two single-

stranded DNA molecules can form a partially double-stranded DNA molecule as illustrated in

Figure 4.2 if and only if α = xy, β = θ(yz), where x, y, z ∈ Σ+. If x = z = λ, two single-stranded

DNA molecules y and θ(y) can form a double-stranded DNA molecule. These processes are

called hybridization, where the nucleobase of each nucleotide in y forms hydrogen bonds with

the nucleobase of the corresponding nucleotide in ȳ.

If a single-stranded DNA molecule hybridizes with itself, a hairpin structure can be formed

with intrastrand base-pairings [5]. Some often more complex structures can be engineered:

3-armed junctions result from hybridizations of each pair among three single-stranded DNA



www.manaraa.com

4.1. Biological Background 63

x y

ȳ z̄

Figure 4.2: The hybridization between two non-empty single-stranded DNA molecules repre-

sented by α, β over the alphabet Σ = {A,C,G,T }, where α = xy, β = θ(yz), x, y, z ∈ Σ+, results

in a partially double-stranded DNA molecule

molecules [24]; double-crossover units result from hybridizations of four single-stranded DNA

molecules [33], etc.

The end of a DNA molecule is called a blunt end if and only it terminates in a base pair. The

end of a DNA molecule is called a sticky end if and only if it has a protruding single-stranded

overhang with unpaired nucleotides. Note that in Figure 4.2, the DNA molecule has a sticky

end; if x = λ, the DNA molecule has a blunt end. Denaturation is the process where all the

hydrogen bonds that bind two complementary nucleobases are broken.

Example The DNA duplex in Figure 4.2 can result in two single-stranded DNA xy and θ(yz)

after denaturation.

Next, we show some enzymes that can act on DNA strands.

Restriction enzymes recognize and cleave double-stranded DNA molecules at specific nu-

cleotide sequences, called restriction sites, by breaking one covalent bond on each strand [91].

Given a solution containing double-stranded DNA molecules, restriction enzymes can cut DNA

molecules at specific sites, and produce shorter double-stranded DNA molecules with blunt or

sticky ends (the cut is offset, leaving single-stranded overhangs on each strand).

DNA ligases join DNA backbones to each other by creating a new covalent bond [68]. DNA

ligases can fill in the backbone gap between two neighbour nucleotides in a double-stranded

DNA molecule with breaks in its backbone. Note that restriction enzymes and DNA ligase are

like the scissors and glue in DNA editing.

Consider a single-stranded oligonucleotide, called a primer, and a longer single-stranded

DNA molecule, called a template. The primer base-pairs with the template, and DNA poly-

merases extend the primer at the 3′ end according to the template by adding complementary

nucleotides to the primer [67].

Example If we have a primer α ∈ Σ+ and a template βθ(α)γ ∈ Σ+, where β, γ ∈ Σ∗, DNA

polymerases can extend the primer to αθ(β).
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Figure 4.3: PCR: Given a solution of free nucleotides, designed primers that match the prefix

of the desired sequence and the prefix of the reversed complement of the desired sequence, and

the original DNA molecules, PCR replicates the desired sequence exponentially [104]

Polymerase Chain Reaction (PCR) is a technique developed by Kary Mullis to replicate a

segment of DNA using DNA polymerases [4]. We can extract a desired sequence of a double-

stranded DNA molecule, and replicate it exponentially by PCR as illustrated in Figure 4.3.

Initially, we have a solution of the original double-stranded DNA molecule, free nucleotides

and designed DNA primers that match the prefix of the desired sequence and the prefix of the

reversed complement of the desired sequence. In each cycle, denaturation separates double-

stranded DNA molecules into single-stranded DNA molecules; primers hybridize with the

longer single-stranded DNA molecules; finally, DNA polymerases extend the primers using

the free nucleotides, using the longer strands as templates. After several iterations, most of the

double-stranded DNA molecules in the solution consist of the strands of the desired sequence

and its reversed complement.

Next, we consider a special case of PCR, called Cross-pairing Polymerase Chain Reac-

tion (XPCR), as illustrated in Figure 4.4 [30]. The input of XPCR are two double-stranded

DNA molecules and two primers, where one primer base-pairs with one single strand of one

of the double-stranded DNA molecules, the other primer hybridize with one single strand of

the other double-stranded DNA molecule, and the remaining two single strands of these two

double-stranded DNA molecules hybridize with each other. The output of XPCR contains the

recombination of these two double-stranded DNA molecules. In other word, given two double-
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Figure 4.4: XPCR: Given two double-stranded DNA molecules αwγ, γw′β and primers γ, θ(β)

(denoted by β̄ in this figure), XPCR generates the double-stranded DNA molecule αwγw′β [30]

stranded DNA molecules αwγ, γw′β and primers γ, θ(β), XPCR generates the double-stranded

DNA molecule αwγw′β.

4.2 Biologically-Inspired Word Operations

4.2.1 Splicing

Given a solution containing double-stranded DNA molecules, restriction enzymes can cut DNA

molecules at specific sites, and produce shorter strands with blunt or sticky ends (the cut is off-

set, leaving single-stranded overhangs on each strand). If ligase enzymes are added to the

solution, some potentially new double-stranded DNA molecules can be produced. DNA re-

combination through the action of restriction and ligase enzymes was formalized by a word

operation called splicing introduced by Head in [42].
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Definition 4.2.1 Let Σ be an alphabet. A splicing rule is a word r = u1#u2$u3#u4, where

u1, u2, u3, u4 ∈ Σ∗, #, $ < Σ.

Note that splicing rules r = u1#u2$u3#u4 formalize the fact that u1u2 and u3u4 represent

the restriction sites of restriction enzymes on double-stranded DNA molecules, while u1u4

represents the double strand formed by ligating the compatible single-stranded overhangs of

double-stranded DNA strands that result from cutting the input DNA strands by the two restric-

tion enzymes with such sites u1u2 and u3u4. Given two words x and y and a splicing rule string

r, a word z can be generated by applying r on x and y as follows:

z ∈ {x1u1u4y2 | x = x1u1u2x2, y = y1u3u4y2, r = u1#u2$u3#u4, x1, x2, y1, y2, u1, u2, u3, u4 ∈ Σ∗}.

Formally, we write (x, y) `r z, and this process is illustrated in Figure 4.5.

x1 u1 u2 x2

y1 u3 u4 y2

Figure 4.5: Splicing of words x1u1u2x2 and y1u3u4y2 with a splicing rule r = u1#u2$u3#u4

results in the word x1u1u4y2

Definition 4.2.2 ([43]) A splicing scheme is a pair σ = (V,R), where V is an alphabet, and

R ⊆ V∗#V∗$V∗#V∗ is the set of splicing rules.

Given a splicing scheme σ = (V,R) and a language L over the alphabet V , the language

obtained by applying splicing rules R to L is σ(L) = {z ∈ V∗ | x, y, ∈ L, r ∈ R, (x, y) `r z}.

In practice, only finitely many different restriction enzymes and ligase enzymes exist, so a

finite splicing scheme whose set of splicing rules is finite is necessary to model any practical

situation. However, it is theoretically interesting to study infinite splicing schemes which can

generate languages from known families of languages. For example, given a splicing scheme

σ = ({a, b}, {a#a$b#b}) and a regular language L = a∗ ∪ b∗, the language σ(L) is a+b+.

Next, we introduce some variations of splicing schemes.

Definition 4.2.3 ([81]) Consider a finite splicing scheme σ = (V,R) and a constant number

k ∈ N+. The splicing scheme σ is called a k−limited splicing scheme if and only if for all

splicing rules r = u1#u2$u3#u4 ∈ R, we have that max{|u1|, |u2|, |u3|, |u4|} ≤ k.

For example, σ = ({a}, {a#a$b#b, a#b$λ#a}) is a 1−limited splicing scheme, which is also

called a unary splicing scheme. The family of k−limited splicing schemes is denoted by k. For

example, we have that 2 is the family of 2−limited splicing schemes.
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Definition 4.2.4 ([43]) Consider a splicing schemeσ = (V,R). The splicing schemeσ is called

a finite (resp. regular, context-free, context-sensitive, recursively enumerable) splicing scheme

if R is a finite (resp. regular, context-free, context-sensitive, recursively enumerable) language.

The family of finite (resp. regular, context-free, context-sensitive, recursively enumerable)

splicing schemes is denoted by f in (resp. reg, c f , cs, re), and we have that 1 ⊂ 2 ⊂ 3... ⊂ f in ⊂

reg ⊂ c f ⊂ cs ⊂ re, since FIN ⊂ REG ⊂ CF ⊂ CS ⊂ RE.

Consider two families of languagesLL,LR. The family of languages generated by applying

splicing schemes σ = (V,R) with splicing rules R ∈ LR to languages L ∈ LL is denoted by

S (LL,LR) = {σ(L) | L ∈ LL, σ = (V,R),R ∈ LR}. With this notation, we have the following

lemma.

Lemma 4.2.5 ([43]) If LL ⊆ L
′
L and LR ⊆ L

′
R, we have that S (LL,LR) ⊆ S (L′L,L

′
R) for all

LL,L
′
L,LR,L

′
R.

Thus, for a family of languages L, we have that S (L, FIN) ⊆ S (L,REG) ⊆ S (L,CF) ⊆

S (L,CS ) ⊆ S (L,RE). With this notation, we can also define the closure property of a family

of languages under splicing.

Definition 4.2.6 ([43]) A family LL of languages is said to be closed under splicing of LR type

if S (LL,LR) ⊆ LL.

Consider a language L ∈ FIN and a splicing scheme σ ∈ re, σ(L) ∈ FIN. For a finite set

of words, there are finitely many ways to recombine them, so S (FIN,RE) ⊆ FIN. It follows

that the family of finite languages is closed under splicing of LR ⊆ RE. The closure properties

of various families of languages under splicing are summarized in Table 4.1 [43].

S (LL,LR) LR = FIN LR = REG LR = LIN LR = CF LR = CS LR = RE

LL = FIN FIN FIN FIN FIN FIN FIN

LL = REG REG REG REG, LIN REG,CF REG,RE REG,RE

LL = LIN LIN,CF LIN,CF RE RE RE RE

LL = CF CF CF RE RE RE RE

LL = CS RE RE RE RE RE RE

LL = RE RE RE RE RE RE RE

Table 4.1: Closure properties of various families of languages under splicing [43], where if a

family of languagesL is in the cell marked byLL,LR, then S (LL,LR) ⊆ L, and if two families

of language L1,L2 is in the cell marked by LL,LR, then L1 ⊆ S (LL,LR) ⊆ L2

Now, we consider the iterated splicing.
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Definition 4.2.7 ([43]) Let σ be a splicing scheme σ = (Σ,R). The iterated splicing σ applied

to a language over the alphabet Σ is σ∗(L) =
⋃

i≥0 σ
i(L), where σ0(L) = L and σi+1(L) =

σi(L) ∪ σ(σi(L)) for i ≥ 1.

Consider two families of languages LL,LR. The family of languages generated by itera-

tively applying splicing scheme σ = (Σ,R) with splicing rules R ∈ LR on languages L ∈ LL

is denoted by H(LL,LR) = {σ∗(L) | L ∈ LL, σ = (Σ,R),R ∈ LR}. With this notation, we can

define the closure of a family of languages under iterated splicing.

Definition 4.2.8 ([43]) Let be a family of languages, and if H(LL,LR) ⊆ LL, LL is said to be

closed under iterated splicing of LR type.

Consider a language L ∈ REG and a splicing scheme σ ∈ f in. It is proven σ∗(L) ∈

REG [43], and it follows that H(REG, FIN) ⊆ REG. Thus, we have that the family of regular

languages is closed under iterated splicing with finite splicing schemes. The closure properties

of various families of languages under iterated splicing are summarized in Table 4.2 [43].

H(LL,LR) LR = FIN LR = REG LR = LIN LR = CF LR = CS LR = RE

LL = FIN FIN,REG FIN,RE FIN,RE FIN,RE FIN,RE FIN,RE

LL = REG REG REG,RE REG,RE REG,RE REG,RE REG,RE

LL = LIN LIN,CF LIN,RE LIN,RE LIN,RE LIN,RE LIN,RE

LL = CF CF CF,RE CF,RE CF,RE CF,RE CF,RE

LL = CS CS ,RE CS ,RE CS ,RE CS ,RE CS ,RE CS ,RE

LL = RE RE RE RE RE RE RE

Table 4.2: Closure properties of various families of languages under iterated splicing [43],

where if a family of languages L is in the cell marked by LL,LR, then H(LL,LR) ⊆ L, and if

two families of language L1,L2 is in the cell marked by LL,LR, L1 ⊆ H(LL,LR) ⊆ L2

Note that FIN ⊆ H(FIN,RE) ⊆ RE because for any recursively enumerable language L

over an alphabet Σ, there exists a language L′ ⊆ H(FIN,RE) over an arbitrary alphabet such

that L = L′ ∩ Σ∗ [82].

Next, we introduce systems that use iterated splicing to generate words.

Definition 4.2.9 ([75]) A simple H system is a triple G = (V,M, A), where V is an alphabet,

M ⊆ V is the set of markers that indicate the possible locations of splicing, and A is a finite

language. Let σM be the splicing scheme of G such that σM = (V, {a#$a# | a ∈ M}). The

language generated by the simple H system G is defined by L(G) = σ∗M(A).



www.manaraa.com

4.2. Biologically-InspiredWord Operations 69

Since we known that H(FIN, FIN) ⊆ REG as shown in Table 4.2, and σM and A are finite

for simple H systems G = (V,M, A), it follows that L(G) is regular. For example, let G be a

simple H system, where G = ({a, b, c}, {a, b}, {abcabc}), and L(G) = {abc}∗ which is regular.

Note that the generative capacity of a simple H system is limited. Next, we will introduce

a more general H system that may use an arbitrarily large set of rules. There are several

definitions of extended H systems as shown in [42, 84, 88], and we show Păun’s definition

here.

Definition 4.2.10 ([88]) An extended H system is a quadruple H = (V,T, A,R), where V is

an alphabet, T ⊆ V is the terminal alphabet, A is a language over the alphabet V, and R ⊆

V∗#V∗$V∗#V∗ is the set of splicing rules. Let σ = (V,R) be the splicing scheme of H. The

language generated by the extended H system H is defined by L(H) = σ∗(A) ∩ T ∗.

Note that extended H systems H = (V,T, A,R) with regular splicing rules R and a finite

language A can generate recursively enumerable languages [82, 87]. Thus, extended H systems

are computationally universal.

4.2.2 Overlap Assembly

Cross-paring Polymerase Chain Reaction (XPCR) amplifies the desired DNA sequence αAγBβ

from two double-stranded DNA molecules whose single strands are αAγ, γBβ and their re-

versed complements [30]. The main product of XPCR can be modeled as the following pro-

cess.

Let x = αγ, y = θ(γβ) be two single-stranded DNA molecules. In a suitable environment,

x and y can form partially double-stranded DNA molecules. With DNA polymerase enzymes,

a completely double-stranded DNA molecule is generated, and two new single-stranded DNA

molecules αγβ and θ(αγβ) are produced after denaturation.

This process was formalized as a binary word operation called linear self-assembly in [18],

the chop operation in [46] and overlap assembly in [26]. It can also be considered as a special

case of a semantic shuffle on trajectories, studied in [22]. The iteration of this process is used to

generate double-stranded DNA molecules which are combinations of shorter, partially double-

stranded DNA molecules [53].

Definition 4.2.11 ([26]) Given two words x, y over an alphabet Σ, the overlap assembly of x

with y is defined by x � y = {uvw | x = uv, y = vw, u,w ∈ Σ∗, v ∈ Σ+} (illustrated in Figure 4.6).

The definition of overlap assembly can be extended to languages Lx, Ly as Lx � Ly =⋃
x∈Lx,y∈Ly

x � y.
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u v

v w

Figure 4.6: The overlap assembly of two words uv and vw over an alphabet Σ, where u,w ∈

Σ∗, v ∈ Σ+, results in the word uvw

The closure properties of the Chomsky families of languages under overlap assembly are

studied in [26], and are summarized in Table 4.3. The state complexity of overlap assembly is

studied in [9].

LL � LR LR ∈ FIN LR ∈ REG LR ∈ CF LR ∈ CS LR ∈ RE

LL ∈ FIN FIN REG CF CS RE

LL ∈ REG REG REG CF CS RE

LL ∈ CF CF CF CS CS RE

LL ∈ CS CS CS CS CS RE

LL ∈ RE RE RE RE RE RE

Table 4.3: Closure properties of various families of languages under overlap assembly

Next, we consider the iterated version of overlap assembly in the context of the assembly

operation defined in [18].

Definition 4.2.12 ([18]) The iterated version of assembly on a language L over an alphabet Σ

is denoted by S+(L) =
⋃

n≥1 S
n(L), where Sn(L) = L � Sn−1(L), S0(L) = L.

The closure properties of the Chomsky families of languages under iterated assembly are

studied in [18], and are summarized in Table 4.4.

L ∈ L S+(L)

L ∈ REG REG

L ∈ CF CF

L ∈ CS RE

L ∈ RE RE

Table 4.4: Closure properties of the Chomsky families of languages under iterated assembly

Some variations of the overlap assembly, assembly and iterated assembly are defined as

follows.
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If we require that the non-overlapping parts of each word cannot be empty, we have a binary

word operation called restricted assembly operation.

Definition 4.2.13 ([18]) Let x, y be non-empty words over an alphabet Σ. The binary word op-

eration called restricted assembly operation R(x, y) is defined by R(x, y) = {uvw | x = uv, y =

vw, u, v,w , λ}. This definition can be extended to languages R(L1, L2) =
⋃

x1∈L1,x2∈L2
R(x1, x2)

for languages L1, L2 over an alphabet Σ. The iterated version of restricted assembly to a lan-

guage L over an alphabet Σ is denoted by R+(L) =
⋃

n≥1 R
n(L), where Rn(L) = R(L,Rn−1(L)),

R0(L) = L.

If we require that the non-overlapping parts of each word cannot be empty with no restric-

tions on the overlapping parts, we have a binary word operation denoted by
⊗

.

Definition 4.2.14 ([51]) Let x, y be arbitrary words over an alphabet Σ. We can define that

x
⊗

y = {uvw | uw , λ, x = uv, y = vw}. This definition can be extended to languages

L1
⊗

L2 =
⋃

x1∈L1,x2∈L2
x1

⊗
x2 for languages L1, L2 over an alphabet Σ. The iterated version

of
⊗

to words y over an alphabet Σ is denoted by p
⊗

k+1 =
⋃

x∈p
⊗

k x
⊗

y for k ∈ N , where

p
⊗

0 = {λ}.

Note that a∗
⊗

b∗ = {a+b∗} ∪ {a∗b+}, where a∗ � b∗ = ∅.

If we choose the longest or the shortest non-empty overlapped part when we perform over-

lap assembly on two non-empty words x, y over an alphabet Σ, we have the following defini-

tions.

Definition 4.2.15 ([46]) Let x, y be non-empty words over an alphabet Σ. The binary word

operation called max chop
⊙

max is defined by x
⊙

max y = {uvw | x = uv, y = vw, v ∈

Σ+,∀u′, v′,w′ : x = u′v′, y = v′w′, |v′| ≤ |v|}.

Definition 4.2.16 ([46]) Let x, y be non-empty words over an alphabet Σ. The binary word

operation called min chop
⊙

min is defined by x
⊙

min y = {uvw | x = uv, y = vw, v ∈

Σ+,∀u′, v′,w′ : x = u′v′, y = v′w′, |v′| ≥ |v|}.

The max and min chop operations can be extended to languages naturally. Consider a

regular language L = a+b+a+, we have that L
⊙

max L = a+b+a+ and L
⊙

min L = a+b+a+b+a+.

Note that if we allow the overlapped part be empty in the max chop operation, we define an

operation called short concatenation [10].

If we choose the length of the overlapped part be at least N ∈ N+ , we have the following

definition.
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Definition 4.2.17 ([23]) Let x, y be non-empty words over an alphabet Σ, and N be a positive

integer. We can define that x
⊙

N y = {uvw | x = uv, y = vw, |v| ≥ N}.

If we consider the case that the overlapped part is a single character, we have the following

definition.

Definition 4.2.18 ([45]) Let x, y be non-empty words over an alphabet Σ. The binary word

operation called fusion
⊙

is defined by x
⊙

y = {uvw | x = uv, y = vw, v ∈ Σ}.

This operation has been called the Latin product in [38].

4.2.3 Contextual Insertion/Deletion

In this subsection, we introduce two language operations called contextual insertion and con-

textual deletion defined and studied in [60]. Both bio-operations can potentially be imple-

mented in the lab using PCR site-specific oligonucleotide mutagenesis [21].

u1 x y u2

x v y

Figure 4.7: The (x, y)−contextual insertion of the word v into the word u = u1xyu2 result in the

word u1xvyu2

Definition 4.2.19 ([60]) Let Σ be an alphabet. A pair (x, y) ∈ {(Σ∗,Σ∗)} is called a context. The

(x, y)−contextual insertion of v into u is defined by u←−−−
(x,y)

v = {u1xvyu2 | u = u1xyu2, u1, u2, v ∈

Σ∗} (illustrated in Figure 4.7).

Note that if the context is (λ, λ), we have the regular insertion operation. Moreover, if xy is

not an infix of u, the result of contextual insertion is empty.

If we have a set of given contexts, we have the following definition.

Definition 4.2.20 ([60]) Let Σ be an alphabet, and C ⊆ {(x, y) | x, y ∈ Σ∗} be a set of given

contexts. The C−contextual insertion of v into u is defined by u ←−
C

v = {u1xvyu2 | u =

u1xyu2, (x, y) ∈ C, u1, u2, v ∈ Σ∗}.

Note that the definition of C−contextual insertion can be extended to languages L1, L2 as

L1 ←−
C

L2 =
⋃

u∈L1,v∈L2
u ←−

C
v. If the context set C is finite, the C−contextual insertion is called
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finite C−contextual insertion. All families Li, 0 ≤ i ≤ 3, are closed under finite C−contextual

insertion [60].

A related operation, contextual deletion, can be defined as follows.

Definition 4.2.21 ([60]) Let Σ be an alphabet, and (x, y) ∈ {(Σ∗,Σ∗)} be a context. The (x, y)-

contextual deletion of v from u is defined by u −−−→
(x,y)

v = {u1xyu2 | u = u1xvyu2, u1, u2, v ∈ Σ∗}

(illustrated in Figure 4.8).

u1 x v y u2

x y

Figure 4.8: The (x, y)−contextual deletion of the word v from the word u = u1xvyu2 results in

the word u1xyu2

Definition 4.2.22 ([60]) Let Σ be an alphabet, and C ⊆ {(x, y) | x, y ∈ Σ∗} be a set of

given contexts. The C−contextual deletion of v from u is defined by u −→
C

v = {u1xyu2 |

u = u1xvyu2, (x, y) ∈ C, u1, u2, v ∈ Σ∗}, and it can be extended to languages as L1 −→
C

L2 =⋃
u∈L1,v∈L2

u −→
C

v.

Note that the (λ, λ)−contextual deletion is sequential deletion. L0 and L3 are closed under

finite C−contextual deletion, and L2 is closed under finite C−contextual deletion with regular

languages, but neither L2 nor L1 is closed under finite C−contextual deletion [60].

u1 x w y u2

u1 x y u2

Figure 4.9: The (x, y)−contextual dipolar deletion of the word v = u1xyu2 from the word

u = u1xwyu2 results in the word w

A similar operation, contextual dipolar deletion, can be defined as follows.

Definition 4.2.23 ([60]) Let Σ be an alphabet, and (x, y) ∈ {(Σ∗,Σ∗)} be a context. The (x, y)-

contextual dipolar deletion of v from u can be defined by u −−−⇀↽−−−
(x,y)

v = {w | u = u1xwyu2, v =

u1xyu2, u1, u2,w ∈ Σ∗} (illustrated in Figure 4.9).
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Let C ⊆ {(x, y) | x, y ∈ Σ∗} be a set of given contexts. The C−contextual dipolar deletion −⇀↽−
C

of v from u is defined by u −⇀↽−
C

v = {w | u = u1xwyu2, v = u1xyu2, u1, u2,w ∈ Σ∗, (x, y) ∈ C}, and

it can be extended to languages as L1 −⇀↽−
C

L2 =
⋃

u∈L1,v∈L2
u −⇀↽−

C
v.

It is shown in [60] that L0 and L3 are closed under finite C−contextual dipolar deletion,

but neither L1 nor L2 is closed under finite C−contextual dipolar deletion.

A system using contextual insertion and deletion is defined and proven to be computation-

ally universal [59, 60, 83, 99].

The languages that are closed under contextual insertion and deletion, and the decidability

of the existence of solutions to equations of the form L�Y = R and X �L = R, where � is either

contextual insertion or contextual deletion, were also studied in [60].

4.2.4 Block Substitution

Errors may occurr in DNA encoded information, where part of a DNA strand is replaced with

another strand of the same length, as illustrated in Figure 4.10, and this process can be modeled

by the bio-operation called block substitution introduced in [58].

u1 u2 u3

v

Figure 4.10: The block substitution in the word u = u1u2u3 by the word v , where |v| = |u2|,

results in the word u1vu3

Note that in this process we only consider one such occurrence of error, and the resulting

strand can be the same as the original strand.

Definition 4.2.24 ([58]) Let Σ be an alphabet, and u, v be words over the alphabet. The block

substitution in u by v is defined by u ./b v = {u1vu3 | u = u1u2u3, |u2| = |v|, u1, u2, u3 ∈ Σ∗}.

Note that v represents the error introduced into u.

Definition 4.2.25 ([58]) Let Σ be an alphabet, and u, v be words over the alphabet. The block

substitution of v in u is defined by u 4b v = {u1u2u3 | u = u1vu3, |u2| = |v|, u1, u2, u3 ∈ Σ∗}.

Note that v represents the subword of u that is the introduced error, and that the length of

words after block substitution is the same as the original. We have another operation .b to

extract the error introduced by block substitution.
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Definition 4.2.26 ([58]) Let u, v be two words over an alphabet Σ. The operation .b is defined

by u .b v = {β | u = u1αu2, v = u1βu2, |α| = |β|, u1, u2, α, β ∈ Σ∗}.

The closure properties under ./b,4b, .b are studied in [58], and are summarized as follows:

• All families Li, 0 ≤ i ≤ 3, are closed under ./b,4b, .b with regular languages;

• All families Li, i = 0, 1, 3, are closed under ./b,4b, but not L2;

• Both families L0,L3 are closed under .b, but neither families L1,L2.

Note that the operation ./b is the left inverse of 4b, and that the operation .b is the right

inverse of ./b [58].

4.2.5 Hairpin Completion

A single-stranded DNA molecule w may form a hairpin structure by Waston-Crick base pair-

ing [5] with itself. There are three possible structures we consider, given by w = αβθ(α),w =

αβθ(α)θ(γ), or w = γαβθ(α), as illustrated in Figure 4.11. A method using DNA hairpin for-

mation to test the satisfiability of a given Boolean formula using laboratory techniques was

proposed in [92], and hairpin related languages were studied in [11].

α

ᾱ
β

γ α

ᾱγ̄ β

γ α

ᾱγ̄ β

Figure 4.11: Possible hairpin structures that can be formed from single-stranded DNA

molecules αβθ(α), αβθ(α)θ(γ), γαβθ(α)

The sticky ends can be used as a template by the DNA polymerase enzyme to completely

extend the strand to the other end, which results in hairpin structures with blunt ends. Thus, we

have that αβθ(α)θ(γ) and γαβθ(α) can be extended to γαβθ(α)θ(γ). This process is formalized

as a unary word operation called hairpin completion→ defined in [12].

Definition 4.2.27 ([12]) Let Σ be an alphabet, k ∈ N+ be a positive integer, and w ∈ Σ∗ be a

word. The k−hairpin completion→k of w is defined by

w→k= w ⇀k ∪w ⇁k,

where

w ⇀k= {γw | w = αβθ(α)θ(γ), |γ| = k, α, β ∈ Σ+, γ ∈ Σ∗},

w ⇁k= {wθ(γ) | w = γβθ(α), |γ| = k, α, β ∈ Σ+, γ ∈ Σ∗}.
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Note that→k considers hairpin structures with sticky ends of length k, where ⇀k considers

hairpin structures with sticky ends of length k at the 3′ end, and ⇁k considers hairpin structures

with sticky ends of length k at the 5′ end. Because the hairpin completion operation considers

all lengths, we have the following definition.

Definition 4.2.28 ([12]) Let Σ be an alphabet, and w ∈ Σ∗ be a word. The hairpin completion

of w is defined by w→=
⋃

k≥1 w→k.

The hairpin completion operation can be extended to languages L as L →k=
⋃

w∈L w →k,

L →=
⋃

w∈L w →. It is shown in [12] that L0 and L1 are closed under hairpin completion, but

L2 and L3 are not.

Next, we consider the iterated version of hairpin completion.

Definition 4.2.29 ([12]) Let Σ be an alphabet, k be a positive integer, and w ∈ Σ∗ be a word.

The iterated version of the k−hairpin completion of w is defined by

w(→k)∗ =
⋃
n∈N

w(→k)n,

where w(→k)n+1 = (w(→k)n) →k for n ≥ 0, w(→k)0 = {w}. It is extended to languages L as

L(→k)∗ =
⋃

w∈L w(→k)∗.

Definition 4.2.30 ([12]) Let Σ be an alphabet, and w ∈ Σ∗ be a word. The iterated version of

the hairpin completion of w is defined by

w(→)∗ =
⋃
n∈N

w(→)n,

where w(→)n+1 = (w(→)n) → for n ≥ 0, w(→)0 = {w}. It is extended to languages L as

L(→)∗ =
⋃

w∈L w(→)∗.

It was shown in [12] that L0 and L1 are closed under iterated hairpin completion, but L2

and L3 are not. Bounded hairpin completion and bounded iterated hairpin completion were

defined and studied in [50, 62], where the maximum length of sticky ends are bounded by a

constant.

Removing, rather than completing, the sticky ends from strands with hairpin structures was

formalized as a unary word operation called hairpin reduction, and was studied in [73, 74]. The

(iterated) bounded hairpin reduction was studied in [50]. Hairpin lengthening was introduced to

formalize the case where hairpin extension occurs but may not be complete (possibly resulting

in hairpin structures with sticky ends), and was studied in [71]. Its iterated version was studied

in [72]. The case where hairpin reduction is not complete was formalized as a word operation,

called hairpin shortening, and studied in [72], and the (iterated) bounded hairpin shortening

was studied in [72].
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4.2.6 Template-Directed Extension

The DNA polymerase enzyme extends a short single-stranded DNA molecule called a primer

according to a longer single-stranded DNA molecule called the template. This process can be

modeled by template-directed extension introduced in [27].

α β γ

β

Figure 4.12: The x−directed extension that extends the primer word β according to the template

word x = αβγ results in the word βγ

Definition 4.2.31 ([27]) Let Σ be an alphabet, x ∈ Σ∗ be the template, and y ∈ Σ∗ be the primer.

The x−directed extension of y is defined by x
⊕

y = {w ∈ Σ∗ | x = αyβ,w = yβ, α, β ∈ Σ∗}

(illustrated in Figure 4.12).

Note that we consider the case that the template and primer are λ, which is not real-

istic in the real world. The x-directed extension of y is extended to languages L1, L2 by

L1
⊕

L2 =
⋃

x∈L1,y∈L2
x
⊕

y. The closure properties of various families of languages under

template-directed extension is summarized in Table 4.5 [27].

L1
⊕

L2 FIN or REG CF CS RE

REG REG CF CS RE

CF CF CS CS RE

CS RE RE RE RE

RE RE RE RE RE

Table 4.5: Closure properties of various families of languages under template-directed exten-

sion



www.manaraa.com

Chapter 5

Word blending in formal languages: The
Brangelina effect

In this chapter1, we define and investigate a binary word operation that formalizes an exper-

imentally observed outcome of DNA computations, performed to generate a small gene li-

brary and implemented using a DNA recombination technique called Cross-pairing Polymerase

Chain Reaction (XPCR). The word blending between two words xwy1 and y2wz that share a

non-empty overlap w, results in xwz. We study closure properties of families in the Chomsky

hierarchy under word blending, language equations involving this operation, and its descrip-

tional state complexity when applied to regular languages. Interestingly, this phenomenon

has been observed independently in linguistics, under the name “blend word”, “mot-valise” or

“portmanteau”, and is responsible for the creation of words in the English language such as

smog (smoke + fog), labradoodle (labrador + poodle), and Brangelina (Brad + Angelina).

5.1 Introduction

Cross-pairing Polymerase Chain Reaction (XPCR) is an experimental DNA protocol intro-

duced in [30] for extracting all the strands containing a given substrand from a heterogeneous

pool of DNA strands. XPCR was then employed to implement several DNA recombination

algorithms [32], for the creation of the solution space for a SAT problem [28], and for mu-

tagenesis [31]. The combinatorial power of such a technique has been explained by logical-

symbolic schemes in [70], while algorithms to create combinatorial libraries were improved

1The chapter is adapted from the paper “Word blending in formal languages: The Brangelina effect” accepted
for publication in the proceedings of the seventeenth International Conference on Unconventional Computation
and Natural Computation, and is co-authored with Dr. Srujan Kumar Enaganti, Dr. Lila Kari and Dr. Timothy Ng

78
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and experimented in [29, 31].

The formal language operation called overlap assembly, introduced in [18] under the name

of self-assembly, and further investigated in [9, 25, 26], also models a special case of XPCR:

The overlap assembly of two strings αx and xβ that share a non-empty overlap x, results in

the string αxβ. A particular case of overlap assembly, called “chop operation”, where the

overlap consists of a single letter, was studied in [44, 45], and generalized to an arbitrary

length overlap in [46]. Other similar operations have been studied in the literature, such as the

“short concatenation” [10], which uses only the maximum-length (possibly empty) overlap y

between operands, the “Latin product” of words [38] where the overlap consists of only one

letter, and the operation
⊗

which imposes the restriction that the non-overlapping part x is not

empty [51]. Overlap assembly can also be considered as a particular case of “semantic shuffle

on trajectories” with trajectory 0∗σ+1∗ or as a generalization of the operation
⊙

N from [23]

which imposes the length of the overlap to be at least N. Many similar biological phenomena

and operations can also be modeled using splicing systems [85, 86]. However, modeling these

operations often does not require the full power of splicing. Properties of splicing languages

under restrictions such as symmetry and reflexivity have been studied in [6, 39].

Returning to the biological process that motivated the study of overlap assembly, the XPCR

procedure has been successfully used to join two different genes if they are attached to compat-

ible primers [29]. Formally, αAγ and γDβ were combined to produce αAγDβ (here A and D

are gene sequences and α, γ and β are primers used). However, when A = D, that is, when two

sequences containing the same gene were combined by XPCR, the result was not as expected.

More specifically, when using XPCR with two strings αAγ and γAβ, instead of obtaining the

expected αAγAβ, the experiments repeatedly produced the result αAβ.

In this chapter, we define and investigate a formal language operation called word blend-

ing, that formalizes this experimentally observed outcome of XPCR: The word blending of two

words xAy1 and y2Az that share a non-empty overlap A results in xAz. Interestingly, this phe-

nomenon has been observed independently in linguistics [41], under the name “blend word”,

“mot-valise” or “portmanteau”, and is responsible for the creation of words in the English lan-

guage such as smog (smoke + fog), labradoodle (labrador + poodle), emoticon (emotion +

icon), and Brangelina (Brad + Angelina).

The chapter is organized as follows. Section 5.2 details the biological motivation behind

the study of word blending, and introduces the main definitions and notations. Section 5.3

studies closure properties of the Chomsky families of languages under word blending, its right

and left inverses, as well as iterated word blending. Section 5.4 investigates the decidability

of existence of solutions to some language equations involving word blending, and Section 5.5

studies the descriptional state complexity of this operation when applied to regular languages.
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5.2 Preliminaries

The biological phenomenon we model in this chapter was observed during the XPCR-based

experiments, initially intended to achieve the concatenation of two or more genes (genomic

DNA strands). It was observed in [29] that, in the particular case where the two genes to

be concatenated were one and the same, that is, when the two input DNA strands were αAγ

and γAβ (here A represents a gene sequence), the output of a PCR-based amplification with

primers α and β was αAβ. This output was different from the expected αAγAβ, which had been

the anticipated result. (Indeed, experiments using XPCR for the purpose of concatenating two

different genes A and D flanked by primers, that is, when the two input strands were αAγ and

γDβ, had resulted in the output αAγDβ. This “expected” output of XPCR was modeled by the

previously mentioned operation of overlap assembly, given by αAγ + γDβ = αAγDβ.)

Generalizing this experimentally newly-observed phenomenon to the case where the end

words of the input strings are different, we model this string recombination as follows. Given

two non-empty words x, y over an alphabet Σ, we define the word blending, or simply blending,

of x with y as

x ./ y = {z ∈ Σ+ | ∃α, β, γ1, γ2 ∈ Σ∗,∃w ∈ Σ+ : x = αwγ1, y = γ2wβ, z = αwβ}.

The definition of blending can be extended to languages L1 and L2 by

L1 ./ L2 =
⋃

x∈L1,y∈L2

x ./ y.

Note that, for a realistic model, we would need additional restrictions such as the fact that w, γ1

and γ2 should be of a sufficient length and should not appear as a substring in the other strings

involved.

We can also extend the blending operation to an iterated version on a language. Let L ⊆ Σ∗

be a language. We define the iterated (word) blending of L by L./0 = L and L./i = L ./ L./i−1 .

We define the iterated blending closure of L by

L./∗ =
⋃
i≥0

L./i .

We observe that the result of the iterated blending operation can be generated by a splicing

system with null context splicing rules [42]. Splicing rules in [42] are of the form (u1, z, u2; u3, z,

u4). For such a rule, if we have strings x = x1u1zu2x2 and y = y1u3zu4y2, we obtain the word

x1u1zu4y2. A splicing rule is a null context rule when u1, u2, u3, u4 = λ. It is easy to see that the

language L./∗ can be generated from a splicing scheme with rules of the form (λ,w, λ; λ,w, λ)

for every word w ∈ Σ+. The relationship between iterated blending and splicing will be dis-

cussed in greater detail in Section 5.3.
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5.3 Closure Properties

In this section, we prove that the families of regular, context-free and recursively enumerable

languages are closed under blending, and that the family of context-sensitive languages is not.

The section also contains closure properties of Chomsky families of languages under the right

and left inverse of word blending, as well as under iterated word blending.

The following lemma shows that word blending is equivalent to a special version where

only one-letter overlaps are utilized.

Lemma 5.3.1 If x, y are non-empty words in Σ+, then

x ./ y = {z ∈ Σ+ | ∃α, β, γ1, γ2 ∈ Σ∗,∃a ∈ Σ : x = αaγ1, y = γ2aβ, z = αaβ}.

This result can be extended to languages in the natural way. Then from this lemma, we can

show that the word blending of two languages can be obtained by combining right quotient,

concatenation, left quotient and union operations, as follows.

Proposition 5.3.2 Given languages L1, L2 ⊆ Σ+,

L1 ./ L2 =
⋃
a∈Σ

(
L1(aΣ∗)−1

)
a
(
(Σ∗a)−1l L2

)
.

Proof (⊆) Let z ∈ L1 ./ L2. Then, by Lemma 5.3.1, z = αaβ, for some x ∈ L1 and y ∈ L2

such that x = αaγ1, y = γ2aβ where a ∈ Σ, α, β, γ1, γ2 ∈ Σ∗. It is clear that α ∈ L1(aΣ∗)−1 and

β ∈ (Σ∗a)−1l L2, so z = αaβ ∈
(
L1(aΣ∗)−1

)
a
(
(Σ∗a)−1l L2

)
.

(⊇) Let z ∈
⋃

a∈Σ

(
L1(aΣ∗)−1

)
a
(
(Σ∗a)−1l L2

)
. Then there exists a ∈ Σ and words α, γ1, γ2, β ∈ Σ∗,

such that z = αaβ, where x = αaγ1 ∈ L1, y = γ2aβ ∈ L2, which implies that z ∈ L1 ./ L2.

Corollary 5.3.3 Every full AFL is closed under word blending.

We note that the families of regular languages, context-free languages and recursively enumer-

able languages are all full AFLs [93].

Proposition 5.3.4 The family of context-sensitive languages is not closed under word blend-

ing.

Proof Let L0 be a recursively enumerable language over Σ, that is not context-sensitive. It is

known that a context-sensitive language L1 over Σ ∪ {a, b} with a, b < Σ, can be constructed

such that L1 consists of words of the form Pbai where i ≥ 0 and P ∈ L0 and, in addition, for

every P ∈ L0 there is an i ≥ 0 such that Pbai ∈ L1 (see, e.g., [93]).

Since it is obvious that L1 ./ {b} = {Pb | P ∈ L0}, which is not context sensitive, it follows

that the family of context sensitive languages is not closed under word blending with singleton

words.
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From Lemma 5.3.1, we can also show that the word blending of two languages can be

obtained by combining inverse homomorphism, union, intersection with regular languages,

concatenation and finite splicing, as follows.

Proposition 5.3.5 Consider languages L1, L2 ⊆ Σ+, two special letters !, ? < Σ, a homomor-

phism h1 defined by h1(!) = λ, h1(a) = a for a ∈ Σ, another homomorphism h2 defined by

h2(?) = λ, h2(a) = a for a ∈ Σ,, and a splicing scheme σ = (Σ, {a#!$a#? | a ∈ Σ}). The word

blending can be represented as L1 ./ L2 = h2(σ(L)), where

L = (h−1
1 (L1) ∩ (Σ∗!Σ∗)) ∪ (h−1

2 (L2) ∩ (Σ∗?Σ∗)).

Proof (⊆) Let z ∈ L1 ./ L2. Then by Lemma 5.3.1, z = αaβ, for some x ∈ L1 and y ∈ L2 such

that x = αaγ1, y = γ2aβ, where a ∈ Σ, α, β, γ1, γ2 ∈ Σ∗. It is clear that αa!γ1, γ2a?β ∈ L, so

αa?β ∈ σ(L). It follows that z ∈ h2(σ(L)).

(⊇) Let z ∈ h2(σ(L)). Then there exists a ∈ Σ and words α, γ1, γ2, β ∈ Σ∗, such that z = αaβ

and αa?β ∈ σ(L). It follows that there exists αa!γ1, γ2a?β ∈ L, so αaγ1 ∈ L1 and γ2aβ ∈ L2,

which implies that z ∈ L1 ./ L2.

Recall that, given a binary word operation �, the binary word operation � is called the

right-inverse of � [56] if and only if for every triplet of words u, y,w ∈ Σ∗ the following

relation holds: w ∈ (u � y) if and only if y ∈ (u�w). In other words, the operation � is called

the right-inverse of � if it can be used to recover the right operand y in u � y, from the other

operand u and a word w ∈ (u � y) in the result. Define now the binary word operation ./r as

u ./r w =
⋃

a∈Σ Σ∗a
((

u(aΣ∗)−1a
)−1l

w
)
. Informally, given a word w = αaβ ∈ (αaγ1 ./ γ2aβ), the

operation ./r outputs the right operand y = γ2aβ of word blending, if it is given as inputs the

result w = αaβ ∈ (u ./ y) and the left operand u = αaγ1. The definition of ./r can be extended

to languages naturally.

Proposition 5.3.6 The operation ./r is the right-inverse of ./.

Proof If w ∈ u ./ y, there exist α, β, γ1, γ2 ∈ Σ∗, b ∈ Σ such that w = αbβ, u = αbγ1, y = γ2bβ

by Lemma 5.3.1. Then, we have that

y = γ2bβ ∈ Σ∗bβ

= Σ∗b
(
(αb)−1l (αbβ)

)
⊆ Σ∗b

(((
(αbγ1) (bΣ∗)−1

)
b
)−1l

(αbβ)
)

⊆
⋃
a∈Σ

Σ∗a
(((

(αbγ1) (aΣ∗)−1
)

a
)−1l

(αbβ)
)
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If y ∈ u ./r w =
⋃

a∈Σ Σ∗a
(((

u (aΣ∗)−1
)

a
)−1l

w
)
, then there exist b ∈ Σ, and γ2 ∈ Σ∗, γ3 ∈(

u (bΣ∗)−1
)

b such that y = γ2b
(
γ−1l

3 w
)
. This implies that

w ∈
(
u (bΣ∗)−1

)
b
(
γ−1l

3 w
)

=
(
u (bΣ∗)−1

)
b
(
(γ2b)−1l

(
γ2b

(
γ−1l

3 w
)))

⊆
(
u (bΣ∗)−1

)
b
(
(Σ∗b)−1l y

)
⊆

⋃
a∈Σ

(
u (aΣ∗)−1

)
a
(
(Σ∗a)−1l y

)
= u ./ y

Corollary 5.3.7 The families of regular languages and recursively enumerable languages are

closed under the right inverse of the blending. Moreover, if L1 is an arbitrary language and

L2 is a regular language, then L1 ./r L2 is regular; if L1 is a regular language and L2 is a

context-free language, then L1 ./
r L2 is context-free.

Proposition 5.3.8 The family of context-free languages is not closed under the right inverse of

blending.

Proof Consider the context-free languages L1 = {a$(bi1ai1$) · · · (binain$) | n ≥ 1, im ≥ 1 for 1 ≤

m ≤ n}, L2 = {(a j1$b2 j1) · · · (a jk$b2 jk)(a j$c2 j) | j ≥ 1, k ≥ 1, jm ≥ 1 for 1 ≤ m ≤ k} and the

regular language R = {$c∗}.

We now show that (L1 ./r L2) ∩ R = {$c2n
| n ≥ 2}. Since words in R start with $

and contain only one symbol $, the only cases in which the words in L1 ./r L2 have the

pattern of the words in R are the cases of word pairs where the overlap letter is $, and a

prefix ending in $ in the word from L1 matches the prefix ending in the last occurrence of $

in the word from L2. More precisely, let u = a$bi1ai1$bi2ai2$ · · · bimaim$ · · · binain$ ∈ L1 and

v = a j1$b2 j1a j2$b2 j2 · · · a jm$b2 jma j$c2 j ∈ L2. For a word w ∈ (L1 ./
r L2) to belong to R, we must

have

a$bi1ai1$bi2ai2$ · · · bimaim$ = a j1$b2 j1a j2$b2 j2 · · · a jm$b2 jma j$,

which implies j1 = 1, j2 = i1 = 2 j1 = 2, . . . , j = im = 2 jm = 2m. Thus, w = $c2 j = $c2m+1
,

which implies (L1 ./
r L2) ∩ R = {$c2n

| n ≥ 2}.

Since the family of context-free languages is closed under intersection with regular lan-

guages, it follows that it is not closed under the right inverse of blending.

Proposition 5.3.9 The family of context-sensitive languages is not closed under the right in-

verse of blending.
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Proof Let L0 be a recursively enumerable language over Σ, that is not context-sensitive, and

the context-sensitive language L1 over Σ∪{a, b} with a, b < Σ, that can be associated to L0 such

that L1 consists of words of the form aibP where i ≥ 0 and P ∈ L0 and, in addition, for every

P ∈ L0 there is an i ≥ 0 such that aibP ∈ L1.

The result now follows as (L1 ./
r {a∗b}) ∩ Σ∗bΣ∗ = {Σ∗bP | b < Σ, P ∈ L0}, which is not

context-sensitive, and the family of context-sensitive languages is closed under intersection

with regular languages.

Recall that given a binary word operation �, the binary word operation � is called the

left-inverse of � iff for every triplet of words x, v,w ∈ Σ∗ the following relation holds: w ∈

(x � v) if and only if x ∈ (w�v) [56].

Proposition 5.3.10 The left inverse of blending can be expressed using the right inverse of

blending, and mirror image as w ./l v = mi (mi (v) ./r mi (w)) .

Proof If w ∈ x ./ v, there exist α, β, γ1, γ2 ∈ Σ∗, b ∈ Σ such that w = αbβ, x = αbγ1, v = γ2bβ

by Lemma 5.3.1. Then, since x = αbγ1 = mi (mi (γ1) b mi (α)), we have

x ∈ mi (Σ∗b mi (α))

= mi
(
Σ∗b

(
(mi (β) b)−1l (mi (β) b mi (α))

))
= mi

(
Σ∗b

((
(mi (β) b mi (γ2)) (b mi (γ2))−1 b

)−1l
mi (w)

))
= mi

(
Σ∗b

(((
mi (v) (b mi (γ2))−1

)
b
)−1l

mi (w)
))

⊆ mi

⋃
a∈Σ

(
Σ∗a

(((
mi (v) (aΣ∗)−1

)
a
)−1l

mi (w)
))

= mi (mi (v) ./r mi (w))

= w ./l v

Now consider x ∈ w ./l v. Then,

x ∈ w ./l v = mi (mi (v) ./r mi (w))

= mi

⋃
a∈Σ

Σ∗a
(((

mi (v) (aΣ∗)−1
)

a
)−1l

mi (w)
) .

Thus, there exist b ∈ Σ, γ1 ∈ Σ∗, γ3 ∈ (mi(v)(bΣ∗)−1)b such that

x = mi
(
mi (γ1) b

(
γ−1l

3 mi (w)
))

=
(
w mi (γ3)−1

)
bγ1



www.manaraa.com

5.3. Closure Properties 85

Then we have

w ∈
(
w mi (γ3)−1

)
b
(
(Σ∗b)−1l v

)
⊆

(
w mi (γ3)−1

)
bγ1 (bΣ∗)−1 b

(
(Σ∗b)−1l v

)
⊆

⋃
a∈Σ

(((
w mi (γ3)−1

)
bγ1

)
(aΣ∗)−1

)
a
(
(Σ∗a)−1l v

)
=

⋃
a∈Σ

(
x (aΣ∗)−1

)
a
(
(Σ∗a)−1l v

)
= x ./ v

Because all families of languages in the Chomsky hierarchy are closed under mirror image,

their closure properties under the left-inverse of word blending are the same as their closure

properties under the right-inverse of word blending.

We now consider the iterated blending operation ./∗. Recall that, as mentioned in Section

5.2, for any language L ⊆ Σ∗, the language L./∗ can be generated by a splicing system with

null-context splicing rules defined as 6-tuples, as in [42]. As shown in [7], every splicing

system where the rules are defined by 6-tuples, can also be implemented by a splicing system as

defined in [86], which uses 4-tuple rules (see Definition 5.3.11). This connection, together with

Proposition 5.3.2, allows us to express iterated word blending using so-called simple splicing

systems [75], themselves a particular case of splicing systems based on 4-tuple splicing rules.

Definition 5.3.11 ([86]) Let σ = (Σ,R) be a splicing scheme, where Σ is the alphabet and R

is a set of rules R ⊆ Σ∗#Σ∗$Σ∗#Σ∗. A rule (u1, u2; u3, u4) is a word u1#u2$u3#u4 ∈ R. For two

strings x, y ∈ Σ∗, we have

σ(x, y) = {x1u1u4y2 |x = x1u1u2x2, y = y1u3u4y2;

x1, x2, y1, y2 ∈ Σ∗, u1#u2$u3#u4 ∈ R}.

For a language L, we define σ(L) = L ∪
⋃

x,y∈L σ(x, y) and we define the iterated splicing of L

by σ∗(L) =
⋃

i≥0 σ
i(L) with σ0(L) = L and σi+1(L) = σ(σi(L)).

Simple splicing schemes are splicing schemes as above, but restricted to rules of the form

(a, λ; a, λ) for a ∈ Σ. Note that for two languages L1 and L2 over Σ, we now have that

L1 ./ L2 =
⋃

x∈L1,y∈L2

σ./(x, y),

where σ./ is the simple splicing scheme σ./ = (Σ,R) with R = {a#λ$a#λ | a ∈ Σ}.

This observation together with Proposition 5.3.2 which showed that the word blending of

two languages can be written L1 ./ L2 =
⋃

a∈Σ(L1(aΣ∗)−1)a((Σ∗a)−1l L2), gives us the following

result.



www.manaraa.com

86 Chapter 5. Word blending in formal languages: The Brangelina effect

Proposition 5.3.12 For any language L ⊆ Σ∗, we have σ./(L) = L ./ L and σ∗./(L) = L./∗ .

We note that the splicing scheme σ./ is finite, since the number of rules depends only on the

number of symbols in Σ, and it is unary, since the rules use words of length at most 1. We also

note that, even though in [75] consideration is restricted to the case when L is a finite language,

the properties of the splicing systems obtained therein imply the following closure properties.

Proposition 5.3.13 Every full AFL is closed under iterated word blending.

Proof Recall that L./∗ = σ∗./(L) and that σ∗./ is finite and unary. For a splicing rule u1#u2$u3#u4,

the words u1 and u4 are called visible sites and u2 and u3 are invisible sites. In [85], it is shown

that full AFLs are closed under regular splicing systems with finitely many visible sites. Since

σ∗./ is finite, the rules of σ∗./ contain only finitely many visible sites.

Now, we will give an explicit construction for L./∗ when L is a regular language. We will re-

quire the following lemma concerning the structure of words generated by the iterated blending

operation.

Lemma 5.3.14 Let L ⊆ Σ+ be a language. Then for each word w ∈ L./∗ , there exists n ∈ N

such that there are words ui ∈ inf(L), 1 ≤ i ≤ n and α j ∈ Σ∗, 1 ≤ j ≤ n and symbols

ak ∈ Σ, 1 ≤ k ≤ n − 1 where

1. for n > 1,

(a) w = α1a1α2a2 · · · an−1αn,

(b) ui = ai−1αiai ∈ inf(L) for all 2 ≤ i ≤ n − 1,

(c) u1 = α1a1 ∈ pref(L) and un = an−1αn ∈ suff(L),

2. u1 = w ∈ L for n = 1.

Proof Let w ∈ L./∗ . Then w ∈ L./ j for some j ≥ 0. We will prove the statement by induction

on j. If j = 0 then w ∈ L and the statement holds taking n = 1. Assume that the statement

holds for words in L./ j for any j ≤ k, and consider a word w ∈ L./k+1 = L ./ L./k . This implies

that w ∈ x ./ y for some x ∈ L and y ∈ L./k . By the induction hypothesis, either y ∈ L or

y = β1b1β2b2 · · · bm−1βm for some m ≥ 2 with bi ∈ Σ, 1 ≤ i ≤ m − 1 and β j ∈ Σ∗, 1 ≤ j ≤ m

satisfying the conditions of the Lemma.

If y ∈ L, then x ./ y consists of all words of the form α1a1α2 where x = α1a1γ1 for

α1, γ1 ∈ Σ∗ and a1 ∈ Σ and y = γ2a1α2 for some γ2, α2 ∈ Σ∗. It is easy to see that α1a1α2

satisfies the conditions of the Lemma.
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Otherwise, if y = β1b1β2b2 · · · bm−1βm for some m ≥ 2, then the set x ./ y consists of words

of the form α′1a′1β
′
`b` · · · bm−1βm where α′1a′1 ∈ pref(x) and 1 ≤ ` ≤ m. Here, we observe that

in order for the blend to occur, we have a′1β
′
` ∈ suff(b`−1β`). Then by definition, we have

α′1a′1 ∈ pref(x) ⊆ pref(L) and a′1β
′
`b` ∈ inf(L) and the rest follows.

Proposition 5.3.15 Given an NFA A, there exists an NFA A′ which can be effectively con-

structed, and which recognizes the language L(A)./∗ .

Proof Given an NFA A = (Q,Σ, s, δ, F), we can construct an NFA A′ = (Q′,Σ, s′, δ′, F′) that

recognizes the language L(A)./∗ . Informally, the machine operates by guessing when a blend

occurs. Recall from Lemma 5.3.14, words of L(A)./∗ are of the form α1a1α2a2 · · · an−1αn. When

a blend occurs on a symbol ai, the machine then simulates the operation of A on the blended

suffix αi+1 and continues to guess when the next blend may occur. This process repeats until

the machine reaches a final state of A and accepts or it does not and the machine rejects.

Formally, we define A′ by

• Q′ = {〈p〉, 〈q, r〉 | p, q, r ∈ Q},

• s′ = 〈s〉,

• F′ = {〈q〉 | q ∈ F},

and the transition function is defined by

• δ′(〈q〉, a) = {〈q′〉, 〈q′, r′〉 | q′ ∈ δ(q, a), r′ ∈
⋃

p∈Q δ(p, a)},

• δ′(〈q, r〉, a) = {〈r′〉, 〈r′, p′〉 | r′ ∈ δ(r, a), p′ ∈
⋃

p∈Q δ(p, a)}.

First, we show that L(A′) ⊆ L(A)./∗ . Consider a word w ∈ L(A′). There exists a sequence of

states, or path, in A′ on w from 〈s〉 to 〈q′n〉 where 〈q′n〉 ∈ F′. Recall that states of A′ are of the

form 〈q〉 or 〈q, r〉. Of the states on the path defined by the computation of w, we consider those

states of the form 〈q, r〉 and label them 〈q′i , qi+1〉 for 0 ≤ i ≤ n. Each state 〈q′i , qi+1〉 is entered

upon reading a symbol which we will call ai ∈ Σ.

Now for each 1 ≤ i ≤ n − 1, consider the path in A′ between 〈q′i−1, qi〉 and 〈q′i , qi+1〉.

Between these two states, each state on the path is of the form 〈q〉, as we have already labeled

states that are of the form 〈q, r〉. This implies that there is a word αi+1ai+1 which takes A from

qi to q′i . But this means that aiαi+1ai+1 is a subword of some word recognized by A. Then we

can write w = α1a1α2a2 · · · an−1αn where α1a1 ∈ pref(L(A)) since it takes A from s to s′ and

αn ∈ suff(L(A)) since it takes A from a state qn to q′n ∈ F. Thus, we have w ∈ L(A)./∗ .
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Now, we show that L(A)./∗ ⊆ L(A′). Consider a word w ∈ L(A)./∗ . We can write w =

α1a1α2a2 · · · an−1αn. Since each aiαi+1ai+1 is a subword of a word recognized by A, there must

exist a path between two states of A, say qi and q′i , on each word αi+1ai+1. Then a path can be

traced in A′ from the initial state 〈s〉 by

〈s〉
α1a1
−−−→ 〈q′0, q1〉

α2a2
−−−→ 〈q′1, q2〉

α3a3
−−−→ · · ·

αn−1an−1
−−−−−−→ 〈q′n−1, qn〉

αn
−→ 〈q′n〉.

Recall that by Lemma 5.3.14, α1a1 ∈ pref(L(A)) and therefore there is a path from s to a state

q′0 in A. Note also that since an−1αn ∈ suff(L(A)), the state q′n which is reached on a path on αn

must be an accepting state of A and therefore 〈q′n〉 ∈ F′ and w ∈ L(A′).

This construction gives us a way to test whether a regular language L is closed under iterated

blending.

Proposition 5.3.16 Let L be a regular language. It is decidable whether or not L is closed

under ./∗.

Proof Let A be an NFA that recognizes L. By the construction given in Proposition 5.3.15, we

can construct an NFA A′ that recognizes L./∗ . Testing equivalence of two NFAs is known to be

decidable [93] and therefore, testing whether L = L./∗ is decidable.

Let L, B ⊆ Σ∗ be two languages. We say that B is a base of L (with respect to ./) if L = B./∗ .

In [75], it is shown that it is decidable whether or not a regular language is generated by a

simple splicing scheme and a finite language base. Here, we extend the result to consider the

case when the base need not be finite.

Proposition 5.3.17 It is decidable whether or not a regular language has a base over ./∗.

Proof Let L ⊆ Σ∗ be a regular language given as a finite automaton. Let R = {w ∈ Σ∗ | |w|a ≤

2 for all a ∈ Σ} be the set of words in which each symbol of Σ appears at most twice. We claim

that if L is closed under ./∗, it must be generated by a base B ⊆ L ∩ R.

Suppose otherwise and that L is generated by a base B′ which is not a subset of L ∩ R.

Then B′ contains a word of the form w = x1ax2ax3ax4, where x1, x2, x3, x4 ∈ Σ∗ and a ∈ Σ. Let

w1 = x1ax2ax4 and w2 = x1ax3ax4 and note that w1,w2 ∈ w ./ w and therefore w1,w2 ∈ L.

Furthermore, we have w ∈ w1 ./ w2 and we can define an equivalent base B′′ = (B′ \ {w}) ∪

{w1,w2}.

Now, we show that we only need to repeat this procedure a finite number of times. One

only needs to consider words of length at most n, where n is the pumping length of L. Indeed,

consider a word u of length greater than n. Since L is regular, we can write u = xy2z where
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x, y, z ∈ Σ∗ and xyz ∈ L is of length at most n. But then we have xyz ∈ u ./ u. Thus, it suffices

to consider only those words in L of length up to n.

We can test whether the base B obtained via this process generates L. Using the construction

of Proposition 5.3.15, we can construct an NFA C that recognizes B./∗ and test whether L(C) =

L(A). This is decidable since NFA equivalence is known to be decidable [93].

As a consequence, we are able to not only decide whether a regular language is closed

under ./∗, but if it is, we know there always exists a finite base that generates it.

Corollary 5.3.18 Let L be a regular language closed under ./∗. Then L can be generated by a

finite base.

Note that in [75] languages generated by simple splicing schemes are assumed to have

finite bases by definition. There it was also shown that the class of languages generated by

these simple splicing schemes is a subclass of the family of regular languages. Here we do not

have the finite base restriction, and Corollary 5.3.18 shows that allowing regular bases does

not give simple splicing schemes and iterated word blending any more power than restricting

bases to be finite.

5.4 Decision Problems

This section investigates the existence of solutions to language equations of the type X ./ L = R

and L ./ Y = R, where L,R are given known languages, X,Y are unknown languages, and ./ is

the word blending operation.

Proposition 5.4.1 The existence of a solution Y to the equation L ./ Y = R is decidable for

given regular languages L and R.

Proof According to [56], since ./r is the right-inverse of word blending, if there exists a solu-

tion Y to the given equation, then Y ′ = (L ./r Rc)c is also a solution. Moreover, in this case Y ′ is

the maximal solution, in the sense that it includes all the other solutions to the equation. Since

the family of regular languages is closed under ./r and complement, the algorithm for deciding

the existence of a solution starts with constructing L ./ Y ′, which is also regular, and checking

whether L ./ Y ′ equals R. As equality of regular languages is decidable [76], if the answer to

the question “Is L ./ Y ′ equal to R?” is “yes”, then a solution to the equation exists, and Y ′ is

such a solution. If the answer is “no”, then the equation has no solution.

Proposition 5.4.2 The existence of a solution X to the equation X ./ L = R is decidable for

regular languages L and R.
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Proof Similar to the preceding proof, and using the closure of the family of regular languages

under the left-inverse of word blending.

Proposition 5.4.3 The existence of a singleton solution {w} to the equation L ./ {w} = R is

decidable for regular languages L and R.

Proof If R is empty, a singleton solution {w} to the equation L ./ {w} = R exists if and only

if L does not use all the letters from the alphabet Σ. The decision algorithm will check the

emptiness of all regular languages L ∩ Σ∗aΣ∗, where a ∈ Σ: If any of them is empty, then

{w} = {a} is a singleton solution, otherwise no singleton solution exists.

We now consider the case when R is not empty. If there is a singleton solution {w} to the

equation L ./ {w} = R, where L,R ⊆ Σ+,w ∈ Σ+ then there is a shortest singleton solution of

length k ≥ 1, denoted by ws = a1a2 · · · ak, with a1, a2, . . . , ak ∈ Σ. We now want to show that

the number of states in any finite state automaton that accepts R is at least k.

If lg(ws) = 1, then λ < R, so the number of states of any finite state machine that recognizes

R is at least 2, which is greater than the length of ws.

Suppose k ≥ 2. Define Li = (L ./ ai)ai+1 · · · ak for 1 ≤ i < k, and define Lk = L ./ ak.

Then, we have R =
⋃k

i=1 Li. Note that L1 *
⋃k

i=2 Li, as otherwise a2a3 · · · ak would be a shorter

singleton solution than ws—a contradiction.

Let α ∈ L1 ⊆ R; α can be represented as α = α1a1a2 · · · ak, where α1 ∈ Σ∗. Assume now

that R is recognized by a DFA M = (Q,Σ, q0, δ, F) with n < k states. Then there is a derivation

q0α1a1a2 · · · ak =⇒∗ qi1a1a2 · · · ak =⇒ qi2a2 · · · ak =⇒ · · · =⇒ qikak =⇒ qik+1 .

Because M has n < k states, there is a state that occurs twice in the set {qi2 , qi3 , . . . , qik+1}.

If qi j = qik+1 where 2 ≤ j ≤ k, then α1a1 · · · a j−1(a j · · · ak)+ ⊆ R, and so there exists a word

α2 ∈ Σ∗ such that α1a1 · · · a j−1(a j · · · ak)+α2 ⊆ L. Thus, we have that

α ∈ α1a1 · · · a j−1(a j · · · ak)+α2 ./ ak ⊆ Lk ⊆

k⋃
i=2

Li

.

If qi j = qih where 2 ≤ j < h ≤ k, then α1a1 · · · a j−1(a j · · · ah−1)+ah · · · ak ⊆ R, and so there

exists a word α2 ∈ Σ∗ such that α1a1 · · · a j−1(a j · · · ah−1)+α2 ⊆ L. Thus, we have that

α ∈
(
α1a1 · · · a j−1(a j · · · ah−1)+α2 ./ ah−1

)
ah · · · ak ⊆ Lh−1 ⊆

k⋃
i=2

Li

.

In either case, for all words α ∈ L1, α ∈
⋃k

i=2 Li. Thus, we have that L1 ⊆
⋃k

i=2 Li, which is

a contradiction.
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For the equation L ./ {w} = R, if there is a singleton solution, there is a singleton solution ws

of minimal length k, and the number of states in any DFA for R is at least k. If the minimal DFA

that generates R has k states, the algorithm for deciding the existence of a singleton solution

will check all the words β, where lg(β) ≤ k. The answer is“yes” if this algorithm finds a string

β such that L ./ {β} = R, and “no” otherwise.

Proposition 5.4.4 The existence of a singleton solution {w} to the equation {w} ./ L = R is

decidable for regular languages L and R.

Proof Similar to the preceding proof, and using the fact that the minimal length of a single-

ton solution to the equation is equal to or smaller than the number of states of any DFA that

recognizes R.

Proposition 5.4.5 The existence of a singleton solution {w} to the equation L ./ {w} = R is

undecidable for regular languages R and context-free languages L.

Proof Assume, for the sake of contradiction, that the existence of a singleton solution {w} to

the equation L ./ {w} = R is decidable for regular languages R and context-free languages L.

Given an arbitrary context-free language L′ over an alphabet Σ, the context-free language

L1 = #Σ+#∪L′$ can be constructed where #, $ < Σ. Note now that the equation L1 ./ {w} = Σ∗$

has a singleton solution {w} if and only if L′ = Σ∗ and the solution is {w} = {$}.

Thus, if we could decide the problem in the proposition, we would be able to decide whether

or not L′ = Σ∗ for arbitrary context-free languages L′, which is impossible.

Corollary 5.4.6 The existence of a solution Y to the equation L ./ Y = R is undecidable for

regular languages R and context-free languages L.

Proposition 5.4.7 1. The existence of a singleton solution {w} to the equation {w} ./ L = R

is undecidable for a regular language R and a context-free language L.

2. The existence of a solution X to the equation X ./ L = R is undecidable for a regular

language R and a context-free language L.

5.5 State Complexity

By Proposition 5.3.2, the family of regular languages is closed under word blending. Thus, we

can consider the state complexity of the blending operation on two regular languages. Recall

from Proposition 5.3.2 that the blending of two languages can be expressed as a series of union,
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concatenation, and quotient operations. While the state complexity of each of these operations

is known, the state complexity of a combination of operations is not necessarily the same as

the composition of the state complexities of the operations [95].

First, for illustrative purposes, we will construct an NFA that recognizes the blending of

two languages given by DFAs. Let Am = (Qm,Σ, δm, sm, Fm) be a DFA with m ≥ 1 states that

recognizes the language Lm and let An = (Qn,Σ, δn, sn, Fn) be a DFA with n ≥ 1 states that

recognizes the language Ln. We construct an NFA B′ = (Q′,Σ, δ′, s′, F′), where Q′ = Qm ∪Qn,

s′ = sm, F′ = Fn, and the transition function δ′ : Q′ × Σ → 2Q′ is defined for all q ∈ Q′ and

a ∈ Σ by

δ′(q, a) =


⋃

p∈Qn
δn(p, a) if q ∈ Qm and δm(q, a) is not the sink state,

δm(q, a) if q ∈ Qm and δm(q, a) is the sink state,

δn(q, a) if q ∈ Qn.

p0start p1 p2

Am
b

a

b

a

c

c

a, b, c

q0start q1

An
a, c

b

c

a, b

p0start p1 p2B′

b

a

b

a

c

c

a, b, c

q0 q1a, c

b

c

a, b

a, b
a, b

b b

Figure 5.1: The NFA B′ recognizes the blend of the languages recognized by the DFAs Am and

An

In Figure 5.1, we define two DFAs Am and An and show the NFA B′ resulting from the

construction described above. Intuitively, the machine B′ operates by first reading the input

word assuming that it is the prefix of some word recognized by Am. Since the blending occurs

on only one symbol, the machine guesses at which symbol the blend occurs. Once the blend

occurs the machine continues and assumes the rest of the word is the suffix of some word

recognized by An.
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Proposition 5.5.1 The NFA B′ recognizes the language Lm ./ Ln.

Proof First, we show that Lm ./ Ln ⊆ L(B′). Let w ∈ Lm ./ Ln and write w = αaβ for a symbol

a ∈ Σ and words α, β ∈ Σ∗ such that for some words γ1, γ2 ∈ Σ∗, we have αaγ1 ∈ Lm and

γ2aβ ∈ Ln. Since αa is a prefix of a word in Lm, let p = δm(sm, αa) ∈ δ′(s′, αa). However,

since aβ is a suffix of a word of Ln, there exists a state q ∈ Qn such that δn(q, a) = r and by the

definition of δ′, we have r ∈ δ′(s′, αa). From here, we observe that we must have δn(r, β) ∈ Fn

and therefore δ′(r, β) ∈ F′ and w is accepted by B′.

Next, we show that L(B′) ⊆ Lm ./ Ln and consider a word w ∈ L(B′). By definition, must

exist a path on w from s′ = sm to a state in Fn and we can divide the path into two parts. The

first part consists of transitions among states of Am and the latter part consists of transitions

among states of Qn. Observe that the only way for a transition from a state p ∈ Qm to a state

q ∈ Qn to be defined is if for some symbol a ∈ Σ, δm(p, a) is not a transition to a sink state

and that δn(r, a) = q for some r ∈ Qn. Thus, we can write w = xay for words x, y ∈ Σ∗, where

a ∈ Σ is the symbol on which the path transitions from states of Am to states of An. Then this

implies that xa is a prefix of some word in Lm and ay is a suffix of some word in Ln. Therefore,

w ∈ Lm ./ Ln by definition and thus, we have shown that B′ recognizes Lm ./ Ln.

Now, using the same basic idea, we will construct a DFA that recognizes the language of

the blending of the two languages recognized by two given DFAs Am and An. We construct a

DFA A′ = (Q′,Σ, δ′, s′, F′) where

• Q′ = Qm × 2Qn ,

• s′ = (sm, ∅),

• F′ = {(q, P) ∈ Qm × 2Qn | P ∩ Fn , ∅},

• δ′((q, P), a) = (δm(q, a), P′) for a ∈ Σ, where

P′ =


⋃

p∈P δn(p, a) if δm(q, a) is the sink state,⋃
p∈Qn

δn(p, a) otherwise.

Figure 5.2 shows the DFA A′ that results from following the construction described above,

where Am and An are the DFAs shown in Figure 5.1, and Figure 5.3 shows the minimal DFA.

Each state of A′ is a pair consisting of a state of Am and a subset of states of An. Informally,

we can divide the computation of a word into two phases. In the first phase, states of the form

(q, P) are reached where q is not the sink state of Am. Here, the set P is determined solely by

the input symbol as the machine tries to guess the symbol on which the blending occurs. In the
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second phase, the machine reaches states (q∅, P), where q∅ is the sink state of Am. The second

phase only occurs when the blend occurs and the input that has been read is no longer a prefix

of a word recognized by Am. In this phase, the set P is determined by the transition function of

An. We will show this formally in the following.

〈p0, ∅〉start 〈p0, (q0)〉 〈p0, (q0, q1)〉

〈p1, (q0)〉 〈p1, (q0, q1)〉

〈p2, (q0)〉 〈p2, (q0, q1)〉〈p2, (q1)〉

〈p2, ∅〉A′

a

b

c

a, b, c

a

b

c

a

b

c

a

b

c

a

b

c

a, c

b

a, b

c
a b, c

Figure 5.2: The DFA A′ recognizes the blend of the languages recognized by Am and An from

Figure 5.1

Proposition 5.5.2 The DFA A′ recognizes the language Lm ./ Ln.

Proof First, to show that Lm ./ Ln ⊆ L(A′), consider a word w ∈ Lm ./ Ln. Then w = αaβ for

some symbol a ∈ Σ and words α, β ∈ Σ∗ where for some γ1, γ2 ∈ Σ∗, we have αaγ1 ∈ Lm and

γ2aβ ∈ Ln. Observe that since αa is a prefix of a word in Lm, the state δm(sm, αa) is not the sink

state. Similarly, since aβ is the suffix of a word in Ln, there exists at least one state in Qn that

has an incoming transition on the symbol a.

If β = λ, then a ∈ suff(Ln) and δ′(s′, αa) ∈ F′ and therefore, w ∈ L(A′). So suppose

β = σβ′ for some symbol σ ∈ Σ and β′ ∈ Σ∗. We assume that δm(sm, αaσ) is the sink state,

since otherwise, we can write w = α′σβ′ where α′ = αa and repeat the same process. Then

reading σ takes us from (δm(sm, αa), P) to the state (q∅, P′), where q∅ denotes the sink state of

Am and P′ =
⋃

p∈P δn(p, a). Since β is the suffix of a word in Ln, there exists a state p ∈ P such
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start
a

b
c

a

b

c

a

b

c

a, c

b

b, c

a a, b

c

a, b, c

Figure 5.3: The minimal DFA for the blend of the languages recognized by Am and An from

Figure 5.1

that δn(p, β) ∈ Fn. Thus, reading the rest of β takes us to a state (q∅, P′′) with P′′ ∩ Fn , ∅ and

therefore, w is recognized by A′.

To show that L(A′) ⊆ Lm ./ Ln, we consider a word w recognized by A′. That is, upon

reading w, the machine A′ reaches a final state (q′, P′) with P′ ∩ Fn , ∅. First, suppose that q′

is not the sink state of Am. We can write w = w′a for a symbol a ∈ Σ and a word w′ ∈ Σ∗. Since

q′ is not the sink state of Am, the word w is a prefix of some word in Lm and we have w′aγ1 ∈ Lm

for some γ1 ∈ Σ∗. By the definition of the transition function, a is a suffix of a word in Ln and

we have γ2a ∈ Ln for some γ2 ∈ Σ∗. Thus, w ∈ w′aγ1 ./ γ2a and therefore w ∈ Lm ./ Ln.

Now, suppose that q′ is the sink state of Am. Let w = αabβ such that αab is the shortest

prefix of w that enters the sink state q′ of Am. Then αa is a prefix of a word in Lm so we have

αaγ1 ∈ Lm for some γ1 ∈ Σ∗. Reading αa takes us to the state δ′(s′, αa) = (q, P) such that q is

some state of Am which is not the sink state and P =
⋃

p∈Qn
δn(p, a).

We claim that abβ is a suffix of a word in Ln. To see this, we observe that since reading b

from (q, P) takes A′ to the state (q′, P′′), where q′ is the sink state of Am, any transitions from

P′′ no longer depend solely on the input symbol. Therefore, there must exist a path in An from

a state r ∈ P to a final state of An on the word abβ. We can write β′ = bβ and thus there exists

a word γ2 such that γ2aβ′ ∈ Ln. Therefore, w ∈ αaγ1 ./ γ2aβ′ and w ∈ Lm ./ Ln as desired.

Thus, we have shown that L(A′) = Lm ./ Ln.

A simple count of the number of states in the state set of A′ gives us as many as m2n states.

We will show that, depending on the size of the alphabet, not all of these states are necessarily

reachable. First, we consider the case where the alphabet is unary.
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Proposition 5.5.3 Let Lm and Ln be regular languages defined over a unary alphabet such that

Lm is recognized by an m-state DFA and Ln is recognized by an n-state DFA. Then the state

complexity of Lm ./ Ln is m + n − 1 if both Lm and Ln are finite or 1 otherwise. Furthermore,

this bound is reachable.

Proof Recall that by Proposition 5.3.2, Lm ./ Ln = (Lm(a+)−1)a((a+)−1l Ln). If either Lm or Ln

are infinitely large, then we have Lm ./ Ln = a∗, in which case the state complexity of Lm ./ Ln

is 1. If both Lm and Ln are finite, then it is easy to see that the state complexity of Lm ./ Ln is

m + n − 1.

Now, we will consider the state complexity when the languages are defined over alphabets

of size greater than 1.

Lemma 5.5.4 The DFA A′ requires at most (m − 1) · (k − 1) + 2n + 1 states if k = |Σ| ≤ 2n;

otherwise, it requires at most (m − 1) · (2n − 1) + 2n + 1 states.

Proof First, observe that in order to maximize the number of reachable states of A′, the DFA

Am must contain a state that cannot reach an accepting state. Otherwise, if every state of Am

can reach an accepting state, then by definition of A′, we have L(Am) ./ L(An) ⊆ pref(L(Am)).

One can construct a DFA for pref(L(Am)) by modifying Am so that every state of Am is a final

state. In this case, A′ would then require at most m states. Thus, we assume that Am contains a

sink state q∅ which cannot reach an accepting state.

Consider the case where k ≤ 2n and the transition function δ′ on a state (q, P), where q , q∅.

Then for each symbol a ∈ Σ, there is only one possible reachable set of states P in An. This

gives us up to (m− 1) · k reachable states. However, we claim that in order for two states (q, P)

and (q, P′) with P , P′ to be distinguishable, q must contain a transition to q∅. Otherwise,

for every symbol a ∈ Σ, we have δ′((q, P), a) = δ′((q, P′), a) by definition. Thus, since every

state must contain at least one transition to q∅ and Am is deterministic, A′ has only at most

(m − 1) · (k − 1) reachable states of this form.

Similarly, for the case where k > 2n, A′ has only at most (m − 1) · (2n − 1) reachable states

of this form.

Next, consider that there are up to 2n reachable states (q∅, P) as derived from the subset

construction.

Notice that the initial state s′ = (sm, ∅) does not belong to any of the above sets. Adding all

of these states together, we have at most (m − 1) · (k − 1) + 2n + 1 reachable states if k ≤ 2n;

otherwise, we have at most (m − 1) · (2n − 1) + 2n + 1 reachable states.
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Lemma 5.5.5 Let k ≥ 3 and m, n ≥ 2. There exist families of DFAs Am with m states and Bn

with n states defined over an alphabet with k letters such that a DFA recognizing Am ./ Bn

requires at least (m − 1) · (k − 1) + 2n + 1 states.

Proof Let Σ = {a1, . . . , ak−2, b, c}. We will define the DFAs Am and Bn over Σ.

Let Am = (Pm,Σ, δm, sm, Fm) where Qm = {0, . . . ,m − 1}, sm = 0, and Fm = {m − 2}. We

define the transition function δm by

• δm(p, ai) = p for all 0 ≤ p ≤ m − 2 and 1 ≤ i ≤ k − 2,

• δm(p, b) = p + 1 for 0 ≤ p ≤ m − 2,

• δm(m − 1, σ) = m − 1 for all σ ∈ Σ.

The DFA Am is shown in Figure 5.4.

Let Bn = (Qn,Σ, ηn, sn, Fn) where Qn = {0, . . . , n − 1}, sn = 0, and Fn = {n − 1}. We will

define the transition function ηn by

• ηn(q, b) = q + 1 mod n for 0 ≤ q ≤ n − 1,

• ηn(q, c) = q for 0 ≤ q ≤ n − 1.

For transitions on symbols ai with 1 ≤ i ≤ k− 2, we define an enumeration of the subsets of Qn

and let Qn[i] be the ith subset of Qn. Any arbitrary enumeration of subsets of Qn suffices for

this proof subject to the condition that

1. for 0 ≤ i ≤ k − 2, each i corresponds to a particular subset of Qn and

2. we reserve Qn[0] = Qn and Qn[1] = {0, 1, . . . , n − 2}.

That is, Qn[i] , Qn[ j] iff i , j for 0 ≤ i, j ≤ k − 2. Also note that while we have defined

Qn[0], there is no symbol a0. We will show later that, by our definitions, the role of a0 will be

played by b. If k > 2n, then this property cannot hold but it is clear that we can enumerate all

2n subsets of Qn.

Then we define transitions on ai ∈ Σ by

η(q, ai) =

q if q ∈ Qn[i],

q + min(q+ j mod n)∈Qn[i] j mod n if q < Qn[i].

In other words, for each state q ∈ Qn, the transition on the symbol ai goes to the “next” state

that is in Qn[i]. If q ∈ Qn[i], then that q itself is the “next” state.

We will show that A′ contains (m− 1) · (k− 1) + 2n + 1 reachable and distinguishable states.
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0start 1 2 · · · m − 2 m − 1

a1, . . . , ak a1, . . . , ak a1, . . . , ak

a1, . . . , ak a1, . . . , ak, b, c

b b b b b, c

c
c

c

Figure 5.4: The DFA Am.

First, to show that the states are reachable, we note that s′ = (sm, ∅) is clearly reachable as

the initial state. Then, we observe that for 1 ≤ i ≤ k−2, the state (q,Qn[i]) with q ∈ Qm \{m−1}

is reachable on the word bqai and (q,Qn[0]) is reachable on the word bq. Since the only symbol

not used here is c, this gives us (m − 1) · (k − 1) states.

Now we consider states of the form (m − 1, P), where P ⊆ Qn. Observe that (m − 1,Qn)

can be reached on the word bm−1. Also, note that (m − 1, ∅) can be reached on the letter c from

(0, ∅).

Next, we will show that all states of the form (m−1, P), where P = Qn \T for some T ⊆ Qn

are reachable from (m − 1,Qn) by induction on |T |. First, consider |T | = 1 and T = {t}. Then,

we have Qn
a1bt+1

−−−−→ Qn \ {t}.

Assume that all states (m−1,Qn\T ′) are reachable from (m−1,Qn), where u = |T ′| ≥ 1. We

will show that all states (m−1,Qn \T ) are reachable from (m−1,Qn), where |T | = u+1 < |Qn|.

Let P = Qn \ T = {t1, t2, . . . , tk−1}, where elements in P are ordered in the ascending order. If

t1 = 0, tk−1 , n − 1, then we have

(m − 1, {0, t2, · · · , tk−1, n − 1})
a1
−→ (m − 1, {0, t2, . . . , tk−1}) = (m − 1, P). (5.1)

Thus, (m − 1, P) is reachable from the state (m − 1, P ∪ {n − 1}), which is reachable from

(m − 1,Qn) by assumption.

If t1 = 0, tk−1 = n−1, there exists a largest integer v < P, where 1 ≤ v < n−1, then we have

(m − 1, {w + n − v − 1 mod n | w ∈ P})
bv+1

−−−→ (m − 1, P).

Thus, (m − 1, P) is reachable from (m − 1,Qn) by (5.1).

If t1 > 0, then we have

(m − 1, {0, t2 − t1, · · · , tk−1 − t1})
bt1

−−→ (m − 1, {t1, t2, . . . , tk−1}).
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That is, (m − 1, P) is reachable from (m − 1,Qn) by (5.1). Thus, all states (m − 1,Qn \ T ) with

|T | = u + 1 are reachable.

Thus, we have an additional 2n reachable states of the form (m − 1, P), giving us a total of

(m − 1) · (k − 1) + 2n + 1 reachable states.

Next, we will show that these states are pairwise distinguishable. Consider two states (q, P)

and (q′, P′). First, we fix P = P′ and assume without loss of generality that q < q′. Then the

two states are distinguished by the word bm−1−qan
1.

Now, we consider when P , P′. In this case, reading c takes the state (q, P) to (m − 1, P)

and (q′, P′) to (m − 1, P′). Then without loss of generality, there exists an element t ∈ P and

t < P′. Then these states are distinguished by the word bn−t.

Thus, we have shown that all (m − 1) · (k − 1) + 2n + 1 states are reachable and pairwise

distinguishable.

These results together give us the following proposition.

Proposition 5.5.6 Let Am be a DFA with m states recognizing the language Lm and let An be a

DFA with n states recognizing the language Ln, where Lm and Ln are defined over an alphabet

Σ of size k. Then

sc(Lm ./ Ln) ≤ (m − 1) · (k − 1) + 2n + 1,

and this bound can be reached in the worst case.
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Conclusions

In this thesis, we defined a novel bio-operation called word blending, which is inspired by

Cross-pairing Polymerase Chain Reaction (XPCR), and we studied closure properties of the

Chomsky families of languages under this operation and its iterated version, the decidability

of existence of solution to equations involving this operation, and the state complexity of this

operation.

In Chapter 2, we overviewed the families of languages in the Chomsky hierarchy. We

defined the family of regular languages, context-free languages, context-sensitive languages

and recursively enumerable languages using the form of their generative grammars, and also

surveyed other ways of characterizing them. Moreover, some decidability problems related

to these language families were given, together with a general approach to prove whether a

problem is decidable or not.

In Chapter 3, we surveyed some commonly used word operations, including their defini-

tions and outlines of proofs of the closure properties of the families of languages in the Chom-

sky hierarchy under these operations. Given a binary word operation �, two known languages

L,R over an alphabet Σ, and unknown languages X,Y over the alphabet Σ, we also describe

a method to solve equations of the form X � L = R and L � Y = R using the right inverse

and the left inverse of �. Next, we discussed abstract families of languages, that is, families

of languages that are closed under some operations, and discussed the idea that an operation

can be represented by a composition of some other operations. Finally, we introduced state

complexity, and showed some examples of how to find the state complexity of an operation.

In Chapter 4, the biological background related to bio-operations was given, and some

biologically-inspired operations were surveyed including their definitions, their iterated ver-

sions, their restricted versions, and closure properties of various language families under these

operations.

In Chapter 5, we introduced and studied the word operation called word blending, to model

100
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a special case of XPCR, where two DNA sequences αAβ, βAγ generate αAγ. Let Σ be an

alphabet. Following the approach used in Chapter 4, we first defined the operation, as x ./

y = {αwβ | x = αwγ1, y = γ2wβ, α, β, γ1, γ2,w ∈ Σ+}. Then, we studied the closure properties

of the Chomsky families of languages under this operation and its iterated version. Moreover,

we studied its state complexity and some equations involving this operation, using methods

discussed in Chapter 3.

Note that our model is a generalization of this special case of XPCR, which however re-

quired γ1 = γ2 in the XPCR experiment that were reported in [29]. In the future, we could

consider a restricted version of word blending with the following definition, which is more

closely aligned to the experimental XPCR whereby γ1 = γ2 = γ.

Definition 6.0.1 Let x, y be two non-empty words over an alphabet Σ. The binary word oper-

ation called restricted word blending ./′ is defined by x ./′ y = {αwβ | x = αwγ, y = γwβ, γ ∈

Σ+}.

Moreover, in [46], the authors have investigated two variations of overlap assembly, using

the longest or the shortest overlap part. Thus, we can also extend our study in this direction.

For the case where the word blending operation uses the longest common non-empty infix, we

have the following definition.

Definition 6.0.2 Let x, y be two non-empty words over an alphabet Σ. The binary word oper-

ation called max word blending ./max is defined by x ./max y = {αwβ | x = αwγ1, y = γ2wβ, γ ∈

Σ+,∀α′, β′, γ′1, γ
′
2 ∈ Σ∗,w′ ∈ Σ+ : x = α′w′γ′1, y = γ′2w′β′, |w| ≥ |w′|}.

The min word blending operation could be defined similarly, but if the word blending can

be applied to two words, these words must have a common part of minimum length 1, so the

word blending operation and the min word blending operation are same due to Lemma 5.3.1.

Lastly, similar to the variation of the overlap assembly operation studied in [23], we can

have a word blending operation where the length of the shared non-empty infix is larger than a

positive integer n ∈ N+. Moreover, the restricted word blending with these length restrictions

could also be considered if found to be mathematically interesting.
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